scispace - formally typeset
Search or ask a question
Author

Wolfgang Meyerhof

Bio: Wolfgang Meyerhof is an academic researcher from Saarland University. The author has contributed to research in topics: Taste & Taste receptor. The author has an hindex of 54, co-authored 156 publications receiving 9697 citations. Previous affiliations of Wolfgang Meyerhof include Technische Universität München & Symrise.
Topics: Taste, Taste receptor, Receptor, TAS2R38, Umami


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that the detection of the numerous bitter chemicals is related to the molecular receptive ranges of hTAS2Rs, and some receptors recognized only few agonists, others displayed moderate or extreme tuning broadness.
Abstract: Humans perceive thousands of compounds as bitter. In sharp contrast, only ;25 taste 2 receptors (TAS2R) bitter taste receptors have been identified, raising the question as to how the vast array of bitter compounds can be detected by such a limited number of sensors. To address this issue, we have challenged 25 human taste 2 receptors (hTAS2Rs) with 104 natural or synthetic bitter chemicals in a heterologous expression system. Thirteen cognate bitter compounds for 5 orphan receptors and 64 new compounds for previously identified receptors were discovered. Whereas some receptors recognized only few agonists, others displayed moderate or extreme tuning broadness. Thus, 3 hTAS2Rs together were able to detect ;50% of the substances used. Conversely, though 63 bitter substances activated only 1–3 receptors, 19 compounds stimulated up to 15 hTAS2Rs. Our data suggest that the detection of the numerous bitter chemicals is related to the molecular receptive ranges of hTAS2Rs.

870 citations

Journal ArticleDOI
TL;DR: Individual psychogenomic pathways for bitter taste are mapped by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil to the in vitro responses of their TAS2R38 receptor variants.

645 citations

Journal ArticleDOI
TL;DR: It is reported that a human member of this family, TAS2R16, is present in taste receptor cells on the tongue and is activated by bitter β-glucopyranosides, which links the recognition of a specific chemical structure to the perception of bitter taste.
Abstract: Bitter taste generally causes aversion, which protects humans from ingesting toxic substances. But bitter flavors also contribute to the palatability of food and beverages, thereby influencing nutritional habits in humans. Although many studies have examined bitter taste, the underlying receptor mechanisms remain poorly understood. Anatomical, functional and genetic data from rodents suggest the existence of a family of receptors that are responsive to bitter compounds. Here we report that a human member of this family, TAS2R16, is present in taste receptor cells on the tongue and is activated by bitter beta-glucopyranosides. Responses to these phytonutrients show a similar concentration dependence and desensitization in transfected cells and in experiments assessing taste perception in humans. Bitter compounds consisting of a hydrophobic residue attached to glucose by a beta-glycosidic bond activate TAS2R16. Thus, TAS2R16 links the recognition of a specific chemical structure to the perception of bitter taste. If the ability of TAS2R16 to detect substances with common molecular properties is typical of the bitter receptor family, it may explain how a few receptors permit the perception of numerous bitter substances.

408 citations

Journal ArticleDOI
TL;DR: In this paper, functional expression experiments in human embryonic kidney cells were conducted to show that saccharin and acesulfame K activate two members of the human TAS2R family at concentrations known to stimulate bitter taste.
Abstract: Weight-conscious subjects and diabetics use the sulfonyl amide sweeteners saccharin and acesulfame K to reduce their calorie and sugar intake. However, the intrinsic bitter aftertaste, which is caused by unknown mechanisms, limits the use of these sweeteners. Here, we show by functional expression experiments in human embryonic kidney cells that saccharin and acesulfame K activate two members of the human TAS2R family (hTAS2R43 and hTAS2R44) at concentrations known to stimulate bitter taste. These receptors are expressed in tongue taste papillae. Moreover, the sweet inhibitor lactisole did not block the responses of cells transfected with TAS2R43 and TAS2R44, whereas it did block the response of cells expressing the sweet taste receptor heteromer hTAS1R2-hTAS1R3. The two receptors were also activated by nanomolar concentrations of aristolochic acid, a purely bitter-tasting compound. Thus, hTAS2R43 and hTAS2R44 function as cognate bitter taste receptors and do not contribute to the sweet taste of saccharin and acesulfame K. Consistent with the in vitro data, cross-adaptation studies in human subjects also support the existence of common receptors for both sulfonyl amide sweeteners.

316 citations

Journal ArticleDOI
11 Oct 2001-Nature
TL;DR: It is shown by in situ hybridization and immunohistochemistry that HCN1 and HCN4 are expressed in a subset of taste cells and may act as receptors for sour taste.
Abstract: Sour taste is initiated by protons acting at receptor proteins or channels. In vertebrates, transduction of this taste quality involves several parallel pathways1,2,3,4,5. Here we examine the effects of sour stimuli on taste cells in slices of vallate papilla from rat. From a subset of cells, we identified a hyperpolarization-activated current that was enhanced by sour stimulation at the taste pore. This current resembled Ih found in neurons and cardio-myocytes6,7, a current carried by members of the family of hyperpolarization-activated and cyclic-nucleotide-gated (HCN) channels8,9,10,11,12,13. We show by in situ hybridization and immunohistochemistry that HCN1 and HCN4 are expressed in a subset of taste cells. By contrast, gustducin, the G-protein involved in bitter and sweet taste14, is not expressed in these cells. Lowering extracellular pH causes a dose-dependent flattening of the activation curve of HCN channels and a shift in the voltage of half-maximal activation to more positive voltages. Our results indicate that HCN channels are gated by extracellular protons and may act as receptors for sour taste.

215 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Book ChapterDOI
TL;DR: In this review particular emphasis is placed on the discrepancy between the concentrations ofadenosine, ADP, and ATP in the purine receptors of UDP and UTP.
Abstract: ### A. Overview Extracellular purines (adenosine, ADP, and ATP) and pyrimidines (UDP and UTP) are important signaling molecules that mediate diverse biological effects via cell-surface receptors termed purine receptors. In this review particular emphasis is placed on the discrepancy between the

4,177 citations

Journal ArticleDOI
TL;DR: The regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood.
Abstract: The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via Gq proteins to phospholipase C-β. The high-affinity receptor state requires both Mg2+ and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has bee...

2,691 citations

Journal Article
TL;DR: Experiments with receptor antagonists and mice with targeted disruption of adenosine A(1), A(2A), and A(3) expression reveal roles for these receptors under physiological and particularly pathophysiological conditions.
Abstract: Four adenosine receptors have been cloned and characterized from several mammalian species. The receptors are named adenosine A(1), A(2A), A(2B), and A(3). The A(2A) and A(2B) receptors preferably interact with members of the G(s) family of G proteins and the A(1) and A(3) receptors with G(i/o) proteins. However, other G protein interactions have also been described. Adenosine is the preferred endogenous agonist at all these receptors, but inosine can also activate the A(3) receptor. The levels of adenosine seen under basal conditions are sufficient to cause some activation of all the receptors, at least where they are abundantly expressed. Adenosine levels during, e.g., ischemia can activate all receptors even when expressed in low abundance. Accordingly, experiments with receptor antagonists and mice with targeted disruption of adenosine A(1), A(2A), and A(3) expression reveal roles for these receptors under physiological and particularly pathophysiological conditions. There are pharmacological tools that can be used to classify A(1), A(2A), and A(3) receptors but few drugs that interact selectively with A(2B) receptors. Testable models of the interaction of these drugs with their receptors have been generated by site-directed mutagenesis and homology-based modelling. Both agonists and antagonists are being developed as potential drugs.

2,582 citations