scispace - formally typeset
Search or ask a question
Author

Wolfgang Osten

Bio: Wolfgang Osten is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Holography & Digital holography. The author has an hindex of 52, co-authored 715 publications receiving 10857 citations. Previous affiliations of Wolfgang Osten include Bremen Institute for Applied Beam Technology & ASML Holding.


Papers
More filters
Journal ArticleDOI
TL;DR: Advantages of the lensless Fourier holography setup for the reconstruction of digitally recorded holograms in holographic interferometry are presented and this very simple setup helps to achieve a maximum lateral resolution of the object under investigation.
Abstract: Advantages of the lensless Fourier holography setup for the reconstruction of digitally recorded holograms in holographic interferometry are presented. This very simple setup helps to achieve a maximum lateral resolution of the object under investigation. Also, the numerical-reconstruction algorithm is very simple and fast to compute. A mathematical model based on Fourier optics is used to describe discretization effects and to determine the lateral resolution. The recording and the reconstruction processes are regarded as an optical imaging system, and the point-spread function is calculated. Results are verified by an experimental setup for a combined shape and deformation measurement.

285 citations

Journal ArticleDOI
TL;DR: A method by which the phase and the amplitude of a wave front are obtained by processing a sequence of intensity patterns recorded at different planes, which does not use any reference wave.
Abstract: We present a method by which the phase and the amplitude of a wave front are obtained by processing a sequence of intensity patterns recorded at different planes. We do not use any reference wave, as one does for holography. Simulations and experimental results are presented.

263 citations

Journal ArticleDOI
TL;DR: A system based on digital holographic interferometry for the measurement of vibrations is presented and by combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object.
Abstract: A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser (10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object.

210 citations

Journal ArticleDOI
TL;DR: It is experimentally shown that one needs only to feed PhysenNet a single diffraction pattern of a phase object, and it can automatically optimize the network and eventually produce the object phase through the interplay between the neural network and the physical model.
Abstract: Most of the neural networks proposed so far for computational imaging (CI) in optics employ a supervised training strategy, and thus need a large training set to optimize their weights and biases. Setting aside the requirements of environmental and system stability during many hours of data acquisition, in many practical applications, it is unlikely to be possible to obtain sufficient numbers of ground-truth images for training. Here, we propose to overcome this limitation by incorporating into a conventional deep neural network a complete physical model that represents the process of image formation. The most significant advantage of the resulting physics-enhanced deep neural network (PhysenNet) is that it can be used without training beforehand, thus eliminating the need for tens of thousands of labeled data. We take single-beam phase imaging as an example for demonstration. We experimentally show that one needs only to feed PhysenNet a single diffraction pattern of a phase object, and it can automatically optimize the network and eventually produce the object phase through the interplay between the neural network and the physical model. This opens up a new paradigm of neural network design, in which the concept of incorporating a physical model into a neural network can be generalized to solve many other CI problems.

201 citations


Cited by
More filters
Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: An overview of 3-D shape measurement using various optical methods, and a focus on structured light tech- niques where various optical configurations, image acquisition technology, data postprocessing and analysis methods and advantages and limitations are presented.
Abstract: We first provide an overview of 3-D shape measurement us- ing various optical methods. Then we focus on structured light tech- niques where various optical configurations, image acquisition tech- niques, data postprocessing and analysis methods and advantages and limitations are presented. Several industrial application examples are presented. Important areas requiring further R&D are discussed. Finally, a comprehensive bibliography on 3-D shape measurement is included, although it is not intended to be exhaustive. © 2000 Society of Photo-Optical Instrumentation Engineers. (S0091-3286(00)00101-X)

1,481 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations