scispace - formally typeset
Search or ask a question
Author

Won Ho Jo

Other affiliations: Yonsei University
Bio: Won Ho Jo is an academic researcher from Seoul National University. The author has contributed to research in topics: Copolymer & Polymer solar cell. The author has an hindex of 55, co-authored 275 publications receiving 9979 citations. Previous affiliations of Won Ho Jo include Yonsei University.


Papers
More filters
Journal ArticleDOI
TL;DR: Fluorinated n-type conjugated polymers are used as efficient electron acceptor to demonstrate high-performance all-polymer solar cells to result in enhanced photocurrent and suppressed charge recombination.
Abstract: Fluorinated n-type conjugated polymers are used as efficient electron acceptor to demonstrate high-performance all-polymer solar cells. The exciton generation, dissociation, and charge-transporting properties of blend films are improved by using these fluorinated n-type polymers to result in enhanced photocurrent and suppressed charge recombination.

411 citations

Journal ArticleDOI
TL;DR: Hydrophobically modified chitosan containing 5.1 deoxycholic acid groups per 100 anhydroglucose units was synthesized by an EDC-mediated coupling reaction and an efficient of COS-1 cells was achieved by self-aggregates/DNA complexes.

375 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the morphologies of polymer-based solar cells and the parameters that govern the evolution of the morphology and describe different approaches to achieve the optimum morphology for a BHJ OPV.
Abstract: We review the morphologies of polymer-based solar cells and the parameters that govern the evolution of the morphologies and describe different approaches to achieve the optimum morphology for a BHJ OPV. While there are some distinct differences, there are also some commonalities. It is evident that morphology and the control of the morphology are important for device performance and, by controlling the thermodynamics, in particular, the interactions of the components, and by controlling kinetic parameters, like the rate of solvent evaporation, crystallization and phase separation, optimized morphologies for a given system can be achieved. While much research has focused on P3HT, it is evident that a clearer understanding of the morphology and the evolution of the morphology in low bad gap polymer systems will increase the efficiency further. While current OPVs are on the verge of breaking the 10% barrier, manipulating and controlling the morphology will still be key for device optimization and, equally important, for the fabrication of these devices in an industrial setting. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012

319 citations

Journal ArticleDOI
TL;DR: A polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).
Abstract: Copolymers composed of diketopyrrolopyrrole and phenylene units with different numbers of fluorine subsitution are synthesized. When the effect of the number of fluorine substitution on the n-channel transporting property is investigated, the polymer with four fluorine substitutions exhibits the best n-type charge-transporting behavior with an electron mobility of 2.36 cm(2) V(-1) s(1).

250 citations

Journal ArticleDOI
24 Aug 2010-ACS Nano
TL;DR: Oligothiophene-terminated poly(ethylene glycol) was synthesized and used as a non-ionic and amphiphilic surfactant for fabricating high-quality single-walled carbon nanotube (SWCNT) films by a simple spin coating method.
Abstract: Oligothiophene-terminated poly(ethylene glycol) was synthesized and used as a non-ionic and amphiphilic surfactant for fabricating high-quality single-walled carbon nanotube (SWCNT) films by a simple spin coating method. The absence of charge repulsion between SWCNT/surfactant complexes successfully leads to formation of a dense network of SWCNTs on the substrate through a single deposition of spin coating. When the SWCNT film was treated with nitric acid and thionyl chloride after washed with dichloromethane and water, a high-performance SWCNT film with the sheet resistance of 59 ohm/sq and the transparency of 71% at 550 nm was successfully obtained. Since the SWCNT film exhibits a high value of σdc/σac (∼17) and excellent dimensional stability after releasing from the substrate, the film can be used as a transparent electrode in flexible optoelectronic devices.

217 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Chitin is the second most important natural polymer in the world as mentioned in this paper, and the main sources of chitin are two marine crustaceans, shrimp and crabs, which are used for food, cosmetics, biomedical and pharmaceutical applications.

6,365 citations

Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations

Journal ArticleDOI
07 Jul 2008-Polymer
TL;DR: In this paper, the technology involved with exfoliated clay-based nanocomposites and also include other important areas including barrier properties, flammability resistance, biomedical applications, electrical/electronic/optoelectronic applications and fuel cell interests.

2,917 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the current understanding of carbon nanotubes and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT-based functionalization on the properties of polymers.
Abstract: Carbon nanotubes (CNTs) hold the promise of delivering exceptional mechanical properties and multi-functional characteristics. Ever-increasing interest in applying CNTs in many different fields has led to continued efforts to develop dispersion and functionalization techniques. To employ CNTs as effective reinforcement in polymer nanocomposites, proper dispersion and appropriate interfacial adhesion between the CNTs and polymer matrix have to be guaranteed. This paper reviews the current understanding of CNTs and CNT/polymer nanocomposites with two particular topics: (i) the principles and techniques for CNT dispersion and functionalization and (ii) the effects of CNT dispersion and functionalization on the properties of CNT/polymer nanocomposites. The fabrication techniques and potential applications of CNT/polymer nanocomposites are also highlighted.

2,849 citations

Journal ArticleDOI
TL;DR: The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility.
Abstract: Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development For instance, current high-efficiency (>90%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor Here we report the achievement of high-performance (efficiencies up to 108%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility

2,839 citations