scispace - formally typeset
Search or ask a question
Author

Won Jo Cheong

Bio: Won Jo Cheong is an academic researcher from Inha University. The author has contributed to research in topics: Monolith & Capillary electrochromatography. The author has an hindex of 20, co-authored 98 publications receiving 1681 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this special review, the reviews in recent ca.
Abstract: Molecular imprinted polymer is an artificial receptor made by imprinting molecules of a template in a polymer matrix followed by removing the template molecules via thorough washing to give the permanent template grooves. They show favored affinity to the template molecule compared to other molecules, and this property is the basic driving force for such diverse application of this techniques. Such techniques have been increasingly employed in a wide scope of applications such as chromatography, sample pretreatment, purification, catalysts, sensors, and drug delivery, etc., mostly in bioanalytical areas. A major part of them is related to development of new stationary phases and their application in chromatography and sample pretreatment. Embodiments of molecular imprinted polymer materials have been carried out in a variety of forms such as irregularly ground particles, regular spherical particles, nanoparticles, monoliths in a stainless steel or capillary column, open tubular layers in capillaries, surface attached thin layers, membranes, and composites, etc. There have been numerous review articles on molecular imprinted polymer issues. In this special review, the reviews in recent ca. 10 years will be categorized into several subgroups according to specified topics in separation science, and each review in each subgroup will be introduced in the order of date with brief summaries and comments on new developments and different scopes of prospects. Brief summaries of each categories and conclusive future perspectives are also given.

425 citations

Journal ArticleDOI
Won Jo Cheong1, Faiz Ali1, Ji Ho Choi1, Jin OoK Lee1, Kim Yune Sung1 
15 Mar 2013-Talanta
TL;DR: In this review, progresses in applications of enantio-selective recognition by MIPs will be critically reviewed for the recent period since 2007.

82 citations

Journal ArticleDOI
TL;DR: Very good separation selectivity and efficiency were observed, thus the chromatographic resolution of ketoprofen enantiomers was as high as 10.5, and the number of theoretical plates of R-ketofen, 156,000/m, proves that the OT-MIP-CEC type approach is a promising strategy in MIP study.

69 citations

Journal ArticleDOI
TL;DR: In this review, recent progresses since mostly 2007 will be critically discussed in detail with some summarized descriptions for the work before the date.

68 citations

Journal ArticleDOI
03 Apr 2000-Talanta
TL;DR: The Sep-Pak C(18) cartridge was useful for preconcentration and recovery of water-soluble vitamins in urine with minimized loss of vitamins and the concentration of each vitamin increased rapidly to the maximum in 2-3 h and decreased swiftly.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
Abstract: Mesoporous organic-inorganic hybrid materials, a new class of materials characterized by large specific surface areas and pore sizes between 2 and 15 nm, have been obtained through the coupling of inorganic and organic components by template synthesis. The incorporation of functionalities can be achieved in three ways: by subsequent attachment of organic components onto a pure silica matrix (grafting), by simultaneous reaction of condensable inorganic silica species and silylated organic compounds (co-condensation, one-pot synthesis), and by the use of bissilylated organic precursors that lead to periodic mesoporous organosilicas (PMOs). This Review gives an overview of the preparation, properties, and potential applications of these materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, with the main focus being on PMOs.

2,765 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: This work proposes to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs.
Abstract: Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

1,647 citations

Journal ArticleDOI
TL;DR: This critical review focuses on developments in the Sonogashira reaction achieved in recent years concerning catalysts, reaction conditions and substrates.
Abstract: The coupling of aryl or vinyl halides with terminal acetylenes catalysed by palladium and other transition metals, commonly termed as Sonogashira cross-coupling reaction, is one of the most important and widely used sp2–sp carbon–carbon bond formation reactions in organic synthesis, frequently employed in the synthesis of natural products, biologically active molecules, heterocycles, molecular electronics, dendrimers and conjugated polymers or nanostructures. This critical review focuses on developments in the Sonogashira reaction achieved in recent years concerning catalysts, reaction conditions and substrates (352 references).

1,246 citations

Journal ArticleDOI
TL;DR: This review describes the imprinted polymer production processes, the techniques used for reporting, and the applications of the reported sensors, including those designed to detect toxic chemicals, toxins in foods, drugs, explosives, and pathogens.
Abstract: Molecularly imprinted polymers are synthetic receptors for a targeted molecule. As such, they are analogues of the natural antibody–antigen systems. In this review, after a recounting of the early history of the general field, we specifically focus on the application of these polymers as sensors. In these applications, the polymers are paired with a reporting system, which may be electrical, electrochemical, optical, or gravimetric. The presence of the targeted molecule effects a change in the reporting agent, and a calibrated quantity of the target is recorded. In this review, we describe the imprinted polymer production processes, the techniques used for reporting, and the applications of the reported sensors. A brief survey of recent applications to gas-phase sensing is included, but the focus is primarily on the development of sensors for targets in solution. Included among the applications are those designed to detect toxic chemicals, toxins in foods, drugs, explosives, and pathogens. The application...

749 citations