scispace - formally typeset
Search or ask a question
Author

Wonjoo Suh

Bio: Wonjoo Suh is an academic researcher from Stanford University. The author has contributed to research in topics: Photonic crystal & Yablonovite. The author has an hindex of 12, co-authored 25 publications receiving 2742 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism, is presented and it is shown that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations.
Abstract: We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications.

1,223 citations

Journal ArticleDOI
TL;DR: In this paper, a general temporal coupled-mode theory for multimode optical resonators is proposed, which incorporates a formal description of a direct transmission pathway, and is therefore capable of describing Fano interference phenomena in multimode cavities.
Abstract: We develop a general temporal coupled-mode theory for multimode optical resonators. This theory incorporates a formal description of a direct transmission pathway, and is therefore capable of describing Fano interference phenomena in multimode cavities. Using this theory, we prove a general criterion that governs the existence of nonorthogonal modes. The presence of nonorthogonal modes creates interesting transport properties which can not be obtained in normal resonator systems. We validate our theory by comparing its predictions with first-principles finite-difference time-domain simulations and obtaining excellent agreement between the two.

604 citations

Journal ArticleDOI
TL;DR: A new all-optical mechanism that can compress the bandwidth of light pulses to absolute zero, and bring them to a complete stop, is introduced and demonstrated by finite-difference time-domain simulations of an implementation in photonic crystals.
Abstract: We introduce a new all-optical mechanism that can compress the bandwidth of light pulses to absolute zero, and bring them to a complete stop. The mechanism can be realized in a system consisting of a waveguide side coupled to tunable resonators, which generates a photonic band structure that represents a classical analogue of the electromagnetically induced transparency. The same system can also achieve a time-reversal operation. We demonstrate the operation of such a system by finite-difference time-domain simulations of an implementation in photonic crystals.

433 citations

Journal ArticleDOI
TL;DR: In this article, a mechanically tunable photonic crystal structure consisting of coupled photonic lattice slabs is proposed. And the authors demonstrate that a strong variation of transmission and reflection coefficients of light through such structures can be accomplished with only a nanoscale variation of the spacing between the slabs.
Abstract: We introduce a mechanically tunable photonic crystal structure consisting of coupled photonic crystal slabs. Using both analytic theory, and first-principles finite-difference time-domain simulations, we demonstrate that a strong variation of transmission and reflection coefficients of light through such structures can be accomplished with only a nanoscale variation of the spacing between the slabs. Moreover, by specifically configuring the photonic crystal structures, high sensitivity can be preserved in spite of significant fabrication-related disorders. We expect such structures to play important roles in micromechanically tunable optical sensors and filters.

246 citations

Journal ArticleDOI
Virginie Lousse1, Wonjoo Suh1, Onur Kilic1, Sora Kim1, Olav Solgaard1, Shanhui Fan1 
TL;DR: This work analyzes the angular and polarization properties of a photonic crystal slab mirror and shows that such mirror can be designed to reflect one polarization completely, while allowing 100% transmission for the other polarization, thus behaving as a polarization splitter with a complete contrast.
Abstract: It was recently demonstrated that a photonic crystal slab can function as a mirror for externally incident light along a normal direction with near-complete reflectivity over a broad wavelength range. We analyze the angular and polarization properties of such photonic crystal slab mirror, and show such reflectivity occurs over a sizable angular range for both polarizations. We also show that such mirror can be designed to reflect one polarization completely, while allowing 100% transmission for the other polarization, thus behaving as a polarization splitter with a complete contrast. The theoretical analysis is validated by comparing with experimental measurements.

164 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
Abstract: Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.

3,536 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Abstract: Slow light with a remarkably low group velocity is a promising solution for buffering and time-domain processing of optical signals. It also offers the possibility for spatial compression of optical energy and the enhancement of linear and nonlinear optical effects. Photonic-crystal devices are especially attractive for generating slow light, as they are compatible with on-chip integration and room-temperature operation, and can offer wide-bandwidth and dispersion-free propagation. Here the background theory, recent experimental demonstrations and progress towards tunable slow-light structures based on photonic-band engineering are reviewed. Practical issues related to real devices and their applications are also discussed. The unique properties of wide-bandwidth and dispersion-free propagation in photonic-crystal devices have made them a good candidate for slow-light generation. This article gives the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering.

1,797 citations

Journal ArticleDOI
TL;DR: A nanoplasmonic analogue of EIT is experimentally demonstrated using a stacked optical metamaterial to achieve a very narrow transparency window with high modulation depth owing to nearly complete suppression of radiative losses.
Abstract: In atomic physics, the coherent coupling of a broad and a narrow resonance leads to quantum interference and provides the general recipe for electromagnetically induced transparency (EIT). A sharp resonance of nearly perfect transmission can arise within a broad absorption profile. These features show remarkable potential for slow light, novel sensors and low-loss metamaterials. In nanophotonics, plasmonic structures enable large field strengths within small mode volumes. Therefore, combining EIT with nanoplasmonics would pave the way towards ultracompact sensors with extremely high sensitivity. Here, we experimentally demonstrate a nanoplasmonic analogue of EIT using a stacked optical metamaterial. A dipole antenna with a large radiatively broadened linewidth is coupled to an underlying quadrupole antenna, of which the narrow linewidth is solely limited by the fundamental non-radiative Drude damping. In accordance with EIT theory, we achieve a very narrow transparency window with high modulation depth owing to nearly complete suppression of radiative losses. Plasmonic nanostructures enable the concentration of large electric fields into small spaces. The classical analogue of electromagnetically induced transparency has now been achieved in such devices, leading to a narrow resonance in their absorption spectrum. This combination of high electric-field concentration and sharp resonance offers a pathway to ultracompact sensors with extremely high sensitivity.

1,652 citations

Journal ArticleDOI
TL;DR: Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away.
Abstract: Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work. The fascinating wave phenomenon of ‘bound states in the continuum’ spans different material and wave systems, including electron, electromagnetic and mechanical waves. In this Review, we focus on the common physical mechanisms underlying these bound states, whilst also discussing recent experimental realizations, current applications and future opportunities for research.

1,612 citations