scispace - formally typeset
Search or ask a question
Author

Woo Soon Jang

Other affiliations: ANAS
Bio: Woo Soon Jang is an academic researcher from Yonsei University. The author has contributed to research in topics: Layer (electronics) & Medicine. The author has an hindex of 15, co-authored 25 publications receiving 869 citations. Previous affiliations of Woo Soon Jang include ANAS.

Papers
More filters
Journal ArticleDOI
TL;DR: Th thin-film transistors (TFTs) with a solution-processed channel layer of indium zinc oxide (IZO) on a peroxo-zirconium oxide (ZrO(2)) dielectric with a maximum temperature of 350 °C are demonstrated and successfully blocked leakage current even in annealing at 300 °C.
Abstract: We demonstrated solution-processed thin film transistors on a peroxo-zirconium oxide (ZrO2) dielectric with a maximum temperature of 350 °C. The formation of ZrO2 films was investigated by TG-DTA, FT-IR, and XPS analyses at various temperatures. We synthesized a zirconium oxide solution by adding hydrogen peroxide (H2O2). The H2O2 forms peroxo groups in the ZrO2 film producing a dense-amorphous phase and a smooth surface film. Because of these characteristics, the ZrO2 film successfully blocked leakage current even in annealing at 300 °C. Finally, to demonstrate that the ZrO2 film is dielectric, we fabricated thin-film transistors (TFTs) with a solution-processed channel layer of indium zinc oxide (IZO) on ZrO2 films at 350 °C. These TFTs had a mobility of 7.21 cm2/(V s), a threshold voltage (Vth) of 3.22 V, and a Vth shift of 1.6 V under positive gate bias stress.

163 citations

Journal ArticleDOI
TL;DR: In this article, a simple spectroscopic method was proposed to obtain the crystallinity of poly(3-hexylthiophene) (P3HT) nanofibrils in solutions.
Abstract: In spite of the recent successes in transistors and solar cells utilizing poly(3-hexylthiophene) (P3HT) nanofibrils, systematic analysis on the growth kinetics has not been reported due to the lack of analytical tools. This study proposed a simple spectroscopic method to obtain the crystallinity of P3HT in solutions. On the basis of the analytical approach, we found that the crystallinity hysteresis upon temperature is a simple function of the solubility parameter difference (Δδ) between the P3HT and the solvents. When Δδ ≥ 0.7, a cooling (−20 °C)-and-heating (25 °C) process allowed the preparation of solutions including 1D crystal seeds dispersed in the solution. Simple coating of the seeded solutions completed the growth of the seeds into long nanofibrils at the early stage of the coating and thereby achieved almost 100% crystallinity in the resulting films without any postannealing process. The existence of PCBM for bulk-heterojunction (BHJ) solar cells did not affect the nucleation and growth of the n...

119 citations

Journal ArticleDOI
TL;DR: The results suggest that aqueous solution-processed In2O3 TFTs on ZrO2:B dielectrics could potentially be used for low-cost, low-temperature, and high-performance flexible devices.
Abstract: We developed a solution-processed indium oxide (In2O3) thin-film transistor (TFT) with a boron-doped peroxo-zirconium (ZrO2:B) dielectric on silicon as well as polyimide substrate at 200 °C, using water as the solvent for the In2O3 precursor. The formation of In2O3 and ZrO2:B films were intensively studied by thermogravimetric differential thermal analysis (TG-DTA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR), high-resolution X-ray diffraction (HR-XRD), and X-ray photoelectron spectroscopy (XPS). Boron was selected as a dopant to make a denser ZrO2 film. The ZrO2:B film effectively blocked the leakage current at 200 °C with high breakdown strength. To evaluate the ZrO2:B film as a gate dielectric, we fabricated In2O3 TFTs on the ZrO2:B dielectrics with silicon substrates and annealed the resulting samples at 200 and 250 °C. The resulting mobilities were 1.25 and 39.3 cm(2)/(V s), respectively. Finally, we realized a flexible In2O3 TFT with the ZrO2:B dielectric on a polyimide substrate at 200 °C, and it successfully operated a switching device with a mobility of 4.01 cm(2)/(V s). Our results suggest that aqueous solution-processed In2O3 TFTs on ZrO2:B dielectrics could potentially be used for low-cost, low-temperature, and high-performance flexible devices.

111 citations

Journal ArticleDOI
TL;DR: In vitro and in vivo data demonstrate that the piezoelectric patch promotes the wound healing process through enhanced cellular metabolism, migration, and protein synthesis.
Abstract: Current treatments for wound healing engage in passive healing processes and rarely participate in stimulating skin cell behaviors for active wound healing Electric potential difference-derived electrical fields (EFs) are known to modulate skin cell behaviors Here, a piezoelectric dermal patch is developed that can be applied on skin wound site and EF is generated to promote wound healing The one-directionally aligned zinc oxide nanorod-based piezoelectric patch generates piezoelectric potential upon mechanical deformations induced by animal motion, and induces EF at the wound bed In vitro and in vivo data demonstrate that the piezoelectric patch promotes the wound healing process through enhanced cellular metabolism, migration, and protein synthesis This modality may lead to a clinically relevant piezoelectric dermal patch therapy for active wound healing

108 citations

Journal ArticleDOI
07 Aug 2014-Langmuir
TL;DR: Mechanically bending MoS2 NSs to induce tensile strain enables the production of powerful, efficient electrocatalysis systems for evolving hydrogen.
Abstract: We demonstrated correlations between mechanically bent tensile-strain-induced two-dimensional MoS2 nanosheets (NSs) and their electrochemical activities toward the hydrogen evolution reaction (HER). The tensile-strain-induced MoS2 NSs showed significantly steeper polarization curves and lower Tafel slopes than the strain-free ones, which is consistent with the simple d-band model. Furthermore, the mechanical strain increased the electrochemical activities of all the NSs toward the HER except those loaded with high MoS2 mass. Mechanically bending MoS2 NSs to induce tensile strain enables the production of powerful, efficient electrocatalysis systems for evolving hydrogen.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: The ability to tune the chemistry by choosing a unique combination of transition metals and chalcogen atoms along with controlling their properties by phase engineering allows new functionalities to be realized with TMDs.
Abstract: Transition metal dichalcogenides (TMDs) represent a family of materials with versatile electronic, optical, and chemical properties. Most TMD bulk crystals are van der Waals solids with strong bonding within the plane but weak interlayer bonding. The individual layers can be readily isolated. Single layer TMDs possess intriguing properties that are ideal for both fundamental and technologically relevant research studies. We review the structure and phases of single and few layered TMDs. We also describe recent progress in phase engineering in TMDs. The ability to tune the chemistry by choosing a unique combination of transition metals and chalcogen atoms along with controlling their properties by phase engineering allows new functionalities to be realized with TMDs.

817 citations

Journal ArticleDOI
TL;DR: The state-of-the-art progress of this dynamically developed material family of 2D-GAs with a particular focus on biomedical applications is summarized and some critical unresolved issues, possible challenges/obstacles are summarized.
Abstract: The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.

750 citations

Journal ArticleDOI
TL;DR: The proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester as the electron acceptor and exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices.
Abstract: All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

701 citations

Journal ArticleDOI
TL;DR: In this article , a double-fibril network based on a ternary donor-acceptor morphology with multi-length scales was constructed by combining ancillary conjugated polymer crystallizers and a non-fullerene acceptor filament assembly.
Abstract: In organic photovoltaics, morphological control of donor and acceptor domains on the nanoscale is the key for enabling efficient exciton diffusion and dissociation, carrier transport and suppression of recombination losses. To realize this, here, we demonstrated a double-fibril network based on a ternary donor-acceptor morphology with multi-length scales constructed by combining ancillary conjugated polymer crystallizers and a non-fullerene acceptor filament assembly. Using this approach, we achieved an average power conversion efficiency of 19.3% (certified 19.2%). The success lies in the good match between the photoelectric parameters and the morphological characteristic lengths, which utilizes the excitons and free charges efficiently. This strategy leads to an enhanced exciton diffusion length and a reduced recombination rate, hence minimizing photon-to-electron losses in the ternary devices as compared to their binary counterparts. The double-fibril network morphology strategy minimizes losses and maximizes the power output, offering the possibility of 20% power conversion efficiencies in single-junction organic photovoltaics.

659 citations