scispace - formally typeset
Search or ask a question
Author

Woongsup Yoon

Bio: Woongsup Yoon is an academic researcher from Yonsei University. The author has contributed to research in topics: Combustion & Ignition system. The author has an hindex of 12, co-authored 55 publications receiving 311 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the starting transient and plume blowback at diffuser breakdown of a straight cylindrical supersonic exhaust diffuser with no externally supplied secondary flow are numerically investigated.

36 citations

Journal ArticleDOI
TL;DR: In this paper, a millimeter-sized aluminum particles were used to observe the surface where ignition occurs in air using electro/electroless methods, and surface analysis by SEM, thermal analysis by TGA/DSC, and species analysis by XRD and EDS.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a conical conical nozzle is studied under the condition of constant mass flow rate and static pressure distribution along the nozzle wall, chamber pressure and thrust variation, flow structures and geometric factors of pintle-perturbed conical deformation.

28 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified analytical modeling of single aluminum particle combustion was conducted, where both the heat transfer from the hot ambient gas and the enthalpy of heterogeneous surface reaction (HSR) served to cause the particle ignition.
Abstract: A simplified analytical modeling of single aluminum particle combustion was conducted. Ignition and quasi-steady combustion (QSC) were separately formulated and integrated. Both the heat transfer from the hot ambient gas and the enthalpy of heterogeneous surface reaction (HSR) served to cause the particle ignition. Conservation equations were solved for QSC parameters in conjunction with conserved scalar formulation and Shvab-Zeldovich function. Limit temperature postulate was formulated by a sink term pertinent to the dissociation of the aluminum oxide near the flame zone. Effective latent heat of vaporization was modified for the thermal radiation. Ignition and QSC of the aluminum particle were predicted and discussed with emphasis on the effect of the aluminum oxide and variable properties. The model was validated with the experiments regarding ignition delay time, burning rate, residue particle size, flame temperature, QSC duration, and stand-off distance of the envelop flame. Agreement was satisfactory and the prediction errors were limited within 10%.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of gaseous methane/oxygen injection velocity ratio on the shear coaxial jet flame structure are analyzed using high-speed imaging along with OH* and CH* chemiluminescence.

27 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

01 Nov 1999
TL;DR: In this article, the stirring and mixing properties of one-phase coaxial jets, with large outer (annular) to inner velocity ratio ru = u2/u1 are investigated.
Abstract: The stirring and mixing properties of one-phase coaxial jets, with large outer (annular) to inner velocity ratio ru = u2/u1 are investigated. Mixing is contemplated according to its geometrical, statistical and spectral facets with particular attention paid to determining the relevant timescales of the evolution of, for example, the interface area generation between the streams, the emergence of its scale-dependent (fractal) properties and of the mixture composition after the mixing transition. The two key quantities are the vorticity thickness of the outer, fast stream velocity profile which determines the primary shear instability wavelength and the initial size of the lamellar structures peeled-off from the slow jet, and the elongation rate γ = (u2 − u1)/e constructed with the velocity difference between the streams and the gap thickness e of the annular jet. The kinetics of evolution of the interface corrugations, and the rate at which the mixture evolves from the initial segregation towards uniformity is prescribed by γ−1. The mixing time ts, that is the time needed to bring the initial scalar lamellae down to a transverse size where molecular diffusion becomes effective, and the corresponding dissipation scale s(ts) areformula herewhere Re and Sc denote the gap Reynolds number and the Schmidt number, respectively. The persistence of the large-scale straining motion is also apparent from the spectra of the scalar fluctuations which exhibit a k−1 shape on the inertial range of scales.

131 citations

Journal ArticleDOI
21 Jul 2017-Fuel
TL;DR: In this article, the transition from liquid droplet to fuel vapour at the microscopic level was studied using high-speed long-distance microscopy, for three single-component fuels (n-heptane, n-dodecane, and n-hexadecane), into gas at elevated temperatures (700-1200 K) and pressures (2-11 MPa) at 2-11MPa.

96 citations

Journal ArticleDOI
Wenxiang Xu1, Zhong Lan1, Benli Peng1, Rongfu Wen1, Xuehu Ma1 
TL;DR: The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly, and simulation results suggest that the number of nuclei increases monotonously with thenumber of high energy particles.
Abstract: Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation of a wet-spot, increase of contact angle with near-constant contact line, and finally growth with constant contact angle. The growth rate of nuclei also increases with the size of high energy particles.

77 citations