scispace - formally typeset
Search or ask a question
Author

Worapan Kusakunniran

Other affiliations: NICTA, University of New South Wales
Bio: Worapan Kusakunniran is an academic researcher from Mahidol University. The author has contributed to research in topics: Gait (human) & Segmentation. The author has an hindex of 16, co-authored 78 publications receiving 1281 citations. Previous affiliations of Worapan Kusakunniran include NICTA & University of New South Wales.


Papers
More filters
Proceedings ArticleDOI
01 Sep 2009
TL;DR: The extensive experiments show that the proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods in literature.
Abstract: Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper proposes a new multi-view gait recognition approach which tackles the problems mentioned above. Being different from other approaches of same category, this new method creates a so called View Transformation Model (VTM) based on spatial-domain Gait Energy Image (GEI) by adopting Singular Value Decomposition (SVD) technique. To further improve the performance of the proposed VTM, Linear Discriminant Analysis (LDA) is used to optimize the obtained GEI feature vectors. When implementing SVD there are a few practical problems such as large matrix size and over-fitting. In this paper, reduced SVD is introduced to alleviate the effects caused by these problems. Using the generated VTM, the viewing angles of gallery gait data and probe gait data can be transformed into the same direction. Thus, gait signatures can be measured without difficulties. The extensive experiments show that the proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods in literature.

190 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: A novel solution to create a View Transformation Model (VTM) from the different point of view using Support Vector Regression (SVR) to achieve view-independent gait recognition and a new method to seek local Region of Interest (ROI) under one viewing angle for predicting the corresponding motion information under another viewing angle.
Abstract: Gait is a well recognized biometric feature that is used to identify a human at a distance. However, in real environment, appearance changes of individuals due to viewing angle changes cause many difficulties for gait recognition. This paper re-formulates this problem as a regression problem. A novel solution is proposed to create a View Transformation Model (VTM) from the different point of view using Support Vector Regression (SVR). To facilitate the process of regression, a new method is proposed to seek local Region of Interest (ROI) under one viewing angle for predicting the corresponding motion information under another viewing angle. Thus, the well constructed VTM is able to transfer gait information under one viewing angle into another viewing angle. This proposal can achieve view-independent gait recognition. It normalizes gait features under various viewing angles into a common viewing angle before similarity measurement is carried out. The extensive experimental results based on widely adopted benchmark dataset demonstrate that the proposed algorithm can achieve significantly better performance than the existing methods in literature.

176 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed method for gait recognition under various views significantly improves upon existing VTM-based methods and outperforms most other baseline methods reported in the literature.
Abstract: It is well recognized that gait is an important biometric feature to identify a person at a distance, e.g., in video surveillance application. However, in reality, change of viewing angle causes significant challenge for gait recognition. A novel approach using regression-based view transformation model (VTM) is proposed to address this challenge. Gait features from across views can be normalized into a common view using learned VTM(s). In principle, a VTM is used to transform gait feature from one viewing angle (source) into another viewing angle (target). It consists of multiple regression processes to explore correlated walking motions, which are encoded in gait features, between source and target views. In the learning processes, sparse regression based on the elastic net is adopted as the regression function, which is free from the problem of overfitting and results in more stable regression models for VTM construction. Based on widely adopted gait database, experimental results show that the proposed method significantly improves upon existing VTM-based methods and outperforms most other baseline methods reported in the literature. Several practical scenarios of applying the proposed method for gait recognition under various views are also discussed in this paper.

166 citations

Journal ArticleDOI
TL;DR: A novel motion co-clustering is carried out to partition the most related parts of gaits from different views into the same group, which will mean relationships between gait from differentViews will be more precisely described based on multiple groups of the motion Co-Clustering instead of a single correlation descriptor.
Abstract: Human gait is an important biometric feature, which can be used to identify a person remotely. However, view change can cause significant difficulties for gait recognition because it will alter available visual features for matching substantially. Moreover, it is observed that different parts of gait will be affected differently by view change. By exploring relations between two gaits from two different views, it is also observed that a part of gait in one view is more related to a typical part than any other parts of gait in another view. A new method proposed in this paper considers such variance of correlations between gaits across views that is not explicitly analyzed in the other existing methods. In our method, a novel motion co-clustering is carried out to partition the most related parts of gaits from different views into the same group. In this way, relationships between gaits from different views will be more precisely described based on multiple groups of the motion co-clustering instead of a single correlation descriptor. Inside each group, a linear correlation between gait information across views is further maximized through canonical correlation analysis (CCA). Consequently, gait information in one view can be projected onto another view through a linear approximation under the trained CCA subspaces. In the end, a similarity between gaits originally recorded from different views can be measured under the approximately same view. Comprehensive experiments based on widely adopted gait databases have shown that our method outperforms the state-of-the-art.

120 citations

Journal ArticleDOI
TL;DR: An improved scheme of procrustes shape analysis (PSA) is proposed and applied on a sequence of the normalized gait silhouettes to extract a novel view-invariant gait feature based on procrUSTes mean shape (PMS) and consecutively measure a gait similarity based on Procruste distance (PD).
Abstract: Human gait is an important biometric feature which is able to identify a person remotely. However, change of view causes significant difficulties for recognizing gaits. This paper proposes a new framework to construct a new view-invariant feature for cross-view gait recognition. Our view-normalization process is performed in the input layer (i.e., on gait silhouettes) to normalize gaits from arbitrary views. That is, each sequence of gait silhouettes recorded from a certain view is transformed onto the common canonical view by using corresponding domain transformation obtained through invariant low-rank textures (TILTs). Then, an improved scheme of procrustes shape analysis (PSA) is proposed and applied on a sequence of the normalized gait silhouettes to extract a novel view-invariant gait feature based on procrustes mean shape (PMS) and consecutively measure a gait similarity based on procrustes distance (PD). Comprehensive experiments were carried out on widely adopted gait databases. It has been shown that the performance of the proposed method is promising when compared with other existing methods in the literature.

96 citations


Cited by
More filters
Journal ArticleDOI
19 Feb 2014-Sensors
TL;DR: An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.
Abstract: This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

862 citations

Book ChapterDOI
Eric V. Denardo1
01 Jan 2011
TL;DR: This chapter sees how the simplex method simplifies when it is applied to a class of optimization problems that are known as “network flow models” and finds an optimal solution that is integer-valued.
Abstract: In this chapter, you will see how the simplex method simplifies when it is applied to a class of optimization problems that are known as “network flow models.” You will also see that if a network flow model has “integer-valued data,” the simplex method finds an optimal solution that is integer-valued.

828 citations

Journal ArticleDOI
TL;DR: Experimental results show that this first work based on deep CNNs for gait recognition in the literature outperforms the previous state-of-the-art methods by a significant margin, and shows great potential for practical applications.
Abstract: This paper studies an approach to gait based human identification via similarity learning by deep convolutional neural networks (CNNs). With a pretty small group of labeled multi-view human walking videos, we can train deep networks to recognize the most discriminative changes of gait patterns which suggest the change of human identity. To the best of our knowledge, this is the first work based on deep CNNs for gait recognition in the literature. Here, we provide an extensive empirical evaluation in terms of various scenarios, namely, cross-view and cross-walking-condition, with different preprocessing approaches and network architectures. The method is first evaluated on the challenging CASIA-B dataset in terms of cross-view gait recognition. Experimental results show that it outperforms the previous state-of-the-art methods by a significant margin. In particular, our method shows advantages when the cross-view angle is large, i.e., no less than 36 degree. And the average recognition rate can reach 94 percent, much better than the previous best result (less than 65 percent). The method is further evaluated on the OU-ISIR gait dataset to test its generalization ability to larger data. OU-ISIR is currently the largest dataset available in the literature for gait recognition, with 4,007 subjects. On this dataset, the average accuracy of our method under identical view conditions is above 98 percent, and the one for cross-view scenarios is above 91 percent. Finally, the method also performs the best on the USF gait dataset, whose gait sequences are imaged in a real outdoor scene. These results show great potential of this method for practical applications.

534 citations

Journal Article
TL;DR: This paper addresses the automatic detection of microaneurysms in color fundus images, which plays a key role in computer assisted diagnosis of diabetic retinopathy, a serious and frequent eye disease.
Abstract: This paper addresses the automatic detection of microaneurysms in color fundus images, which plays a key role in computer assisted diagnosis of diabetic retinopathy, a serious and frequent eye disease. The algorithm can be divided into four steps. The first step consists in image enhancement, shade correction and image normalization of the green channel. The second step aims at detecting candidates, i.e. all patterns possibly corresponding to MA, which is achieved by diameter closing and an automatic threshold scheme. Then, features are extracted, which are used in the last step to automatically classify candidates into real MA and other objects; the classification relies on kernel density estimation with variable bandwidth. A database of 21 annotated images has been used to train the algorithm. The algorithm was compared to manually obtained gradings of 94 images; sensitivity was 88.5% at an average number of 2.13 false positives per image.

324 citations