scispace - formally typeset
Search or ask a question
Author

Wotao Yin

Bio: Wotao Yin is an academic researcher from Alibaba Group. The author has contributed to research in topics: Optimization problem & Compressed sensing. The author has an hindex of 72, co-authored 303 publications receiving 27233 citations. Previous affiliations of Wotao Yin include University of California, San Diego & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: An alternating minimization algorithm for recovering images from blurry and noisy observations with total variation (TV) regularization from a new half-quadratic model applicable to not only the anisotropic but also the isotropic forms of TV discretizations is proposed.
Abstract: We propose, analyze, and test an alternating minimization algorithm for recovering images from blurry and noisy observations with total variation (TV) regularization. This algorithm arises from a new half-quadratic model applicable to not only the anisotropic but also the isotropic forms of TV discretizations. The per-iteration computational complexity of the algorithm is three fast Fourier transforms. We establish strong convergence properties for the algorithm including finite convergence for some variables and relatively fast exponential (or $q$-linear in optimization terminology) convergence for the others. Furthermore, we propose a continuation scheme to accelerate the practical convergence of the algorithm. Extensive numerical results show that our algorithm performs favorably in comparison to several state-of-the-art algorithms. In particular, it runs orders of magnitude faster than the lagged diffusivity algorithm for TV-based deblurring. Some extensions of our algorithm are also discussed.

1,883 citations

Journal ArticleDOI
TL;DR: A new iterative regularization procedure for inverse problems based on the use of Bregman distances is introduced, with particular focus on problems arising in image processing.
Abstract: We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods by using total variation regularization. We obtain rigorous convergence results and effective stopping criteria for the general procedure. The numerical results for denoising appear to give significant improvement over standard models, and preliminary results for deblurring/denoising are very encouraging.

1,858 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed simple and extremely efficient methods for solving the basis pursuit problem, which is used in compressed sensing, using Bregman iterative regularization, and they gave a very accurate solution after solving only a very small number of instances of the unconstrained problem.
Abstract: We propose simple and extremely efficient methods for solving the basis pursuit problem $\min\{\|u\|_1 : Au = f, u\in\mathbb{R}^n\},$ which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of instances of the unconstrained problem $\min_{u\in\mathbb{R}^n} \mu\|u\|_1+\frac{1}{2}\|Au-f^k\|_2^2$ for given matrix $A$ and vector $f^k$. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrix-vector operations involving $A$ and $A^\top$ can be computed by fast transforms. Utilizing a fast fixed-point continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.

1,510 citations

Proceedings ArticleDOI
12 May 2008
TL;DR: A particular regularization strategy is found to greatly improve the ability of a reweighted least-squares algorithm to recover sparse signals, with exact recovery being observed for signals that are much less sparse than required by an unregularized version.
Abstract: The theory of compressive sensing has shown that sparse signals can be reconstructed exactly from many fewer measurements than traditionally believed necessary. In [1], it was shown empirically that using lscrp minimization with p < 1 can do so with fewer measurements than with p = 1. In this paper we consider the use of iteratively reweighted algorithms for computing local minima of the nonconvex problem. In particular, a particular regularization strategy is found to greatly improve the ability of a reweighted least-squares algorithm to recover sparse signals, with exact recovery being observed for signals that are much less sparse than required by an unregularized version (such as FOCUSS, [2]). Improvements are also observed for the reweighted-lscr1 approach of [3].

1,327 citations

Journal ArticleDOI
TL;DR: This paper considers regularized block multiconvex optimization, where the feasible set and objective function are generally nonconvex but convex in each block of variables and proposes a generalized block coordinate descent method.
Abstract: This paper considers regularized block multiconvex optimization, where the feasible set and objective function are generally nonconvex but convex in each block of variables. It also accepts nonconvex blocks and requires these blocks to be updated by proximal minimization. We review some interesting applications and propose a generalized block coordinate descent method. Under certain conditions, we show that any limit point satisfies the Nash equilibrium conditions. Furthermore, we establish global convergence and estimate the asymptotic convergence rate of the method by assuming a property based on the Kurdyka--Łojasiewicz inequality. The proposed algorithms are tested on nonnegative matrix and tensor factorization, as well as matrix and tensor recovery from incomplete observations. The tests include synthetic data and hyperspectral data, as well as image sets from the CBCL and ORL databases. Compared to the existing state-of-the-art algorithms, the proposed algorithms demonstrate superior performance in ...

1,153 citations


Cited by
More filters
Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Abstract: This article is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individuallyq We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.

6,783 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.
Abstract: Suppose we wish to recover a vector x_0 Є R^m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax_0 + e; A is an n by m matrix with far fewer rows than columns (n « m) and e is an error term. Is it possible to recover x_0 accurately based on the data y? To recover x_0, we consider the solution x^# to the l_(1-)regularization problem min ‖x‖l_1 subject to ‖Ax - y‖l(2) ≤ Є, where Є is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unit-normed columns) and if the vector x_0 is sufficiently sparse, then the solution is within the noise level ‖x^# - x_0‖l_2 ≤ C Є. As a first example, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x_0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x_0; then stable recovery occurs for almost any set of n coefficients provided that the number of nonzeros is of the order of n/[log m]^6. In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals.

6,727 citations