scispace - formally typeset
Search or ask a question
Author

Wpmh Maurice Heemels

Bio: Wpmh Maurice Heemels is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Linear system & Hybrid system. The author has an hindex of 59, co-authored 427 publications receiving 16476 citations. Previous affiliations of Wpmh Maurice Heemels include University of California, Santa Barbara.


Papers
More filters
Proceedings ArticleDOI
09 Dec 2003
TL;DR: In this article, the stability and controllability properties of linear complementarity (LC) systems with two modes and a state dimension of two such conditions are presented, and necessary and sufficient conditions, which are explicit and easily verifiable, are presented.
Abstract: The object of study of this paper is the class of hybrid systems consisting of so-called linear complementarity (LC) systems, that received a lot of attention recently and has strong connections to piecewise affine (PWA) systems. In addition to PWA systems, some of the linear or affine submodels of the LC systems can 'live' at lower-dimensional subspaces and re-initializations of the state variable at mode changes is possible. For LC systems we study the stability and controllability problem. Although these problems received for various classes of hybrid systems ample attention, necessary and sufficient conditions, which are explicit and easily verifiable, are hardly found in the literature. For LC systems with two modes and a state dimension of two such conditions are presented.

53 citations

Journal ArticleDOI
TL;DR: This brief presents the design and implementation of observer design strategies for experimental non-smooth continuous and discontinuous systems and results support the use of (switched) observers to achieve state reconstruction for such non-Smooth and discontinuously mechanical systems.
Abstract: This brief presents the design and implementation of observer design strategies for experimental non-smooth continuous and discontinuous systems. First, a piece-wise linear observer is implemented for an experimental setup consisting of a harmonically excited flexible steel beam with a one-sided support which can be considered as a benchmark for a class of flexible mechanical systems with one-sided restoring characteristics. Second, an observer is developed for an experimental setup that describes a dynamic rotor system which is a benchmark for motion systems with friction and flexibility. In both cases, the implemented observers guarantee global asymptotic stability of the estimation error dynamic in theory. Simulation and experimental results are presented to demonstrate the performance of the observers in practice. These results support the use of (switched) observers to achieve state reconstruction for such non-smooth and discontinuous mechanical systems.

53 citations

Journal ArticleDOI
TL;DR: This paper derives necessary and sufficient conditions for well-posedness in the sense of Filippov of linear systems of relative degree one and two in closed loop with relay feedback and shows that this intuitively clear condition is not true for systems with relative degree larger than two.

53 citations

Proceedings ArticleDOI
01 Dec 2012
TL;DR: This paper proposes event-triggered controllers that guarantee better quadratic discounted cost performance than periodic control strategies using the same average transmission rate.
Abstract: While potential benefits of choosing the transmissions times in a networked control system based on state or event information have been advocated in the literature, few general methods are available that guarantee closed-loop improvements over traditional periodic transmission strategies. In this paper, we propose event-triggered controllers that guarantee better quadratic discounted cost performance than periodic control strategies using the same average transmission rate. Moreover, we show that the performance of a method in the line of previous Lyapunov based approaches is within a multiplicative factor of periodic control performance, while using less transmissions. Our approach is based on a dynamic programming formulation for the co-design problem of choosing both transmission decisions and control inputs in the context of periodic event-triggered control for linear systems. A numerical example illustrates the advantages of the proposed method over traditional periodic control.

51 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: It is shown here that the models can be combined in a unifying hybrid model including the five mentioned network phenomena under some restrictions, and stability will be analyzed of the closed-loop system in which the controller is obtained using an emulation approach.
Abstract: There are many communication imperfections in networked control systems (NCSs) such as varying sampling/transmission intervals, varying delays, possible packet loss, communication constraints and quantization effects. Most of the available literature on NCSs focuses on only some of these phenomena, while ignoring the others, although recently some papers appeared that consider at least three of these phenomena. In one paper time-varying delays, time-varying transmission intervals and communication constraints are considered, while in an other time-varying transmission intervals, communication constraints and quantization effects are studied. As both approaches are based on the same underlying hybrid modeling framework, it will be shown here that the models can be combined in a unifying hybrid model including the five mentioned network phenomena under some restrictions. On the basis of this model, stability will be analyzed of the closed-loop system in which the controller is obtained using an emulation approach. The analysis provides tradeoffs between the maximally allowable transmission interval (MATI), the maximally allowable delay (MAD) and the quantization parameters, while still guaranteeing closed-loop stability.

50 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: This paper focuses on the stability analysis for switched linear systems under arbitrary switching, and highlights necessary and sufficient conditions for asymptotic stability.
Abstract: During the past several years, there have been increasing research activities in the field of stability analysis and switching stabilization for switched systems. This paper aims to briefly survey recent results in this field. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After a brief review of the stability analysis under restricted switching and the multiple Lyapunov function theory, the switching stabilization problem is studied, and a variety of switching stabilization methods found in the literature are outlined. Then the switching stabilizability problem is investigated, that is under what condition it is possible to stabilize a switched system by properly designing switching control laws. Note that the switching stabilizability problem has been one of the most elusive problems in the switched systems literature. A necessary and sufficient condition for asymptotic stabilizability of switched linear systems is described here.

2,470 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations