scispace - formally typeset
Search or ask a question
Author

Wpmh Maurice Heemels

Bio: Wpmh Maurice Heemels is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Linear system & Hybrid system. The author has an hindex of 59, co-authored 427 publications receiving 16476 citations. Previous affiliations of Wpmh Maurice Heemels include University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: A digital architecture suited for fast, low-power and small-size electronic implementation of PieceWise Affine (PWA) functions defined over n-dimensional domains partitioned into multi-resolution hyperrectangles and a simpler and even faster architecture is proposed.
Abstract: In this paper we propose a digital architecture suited for fast, low-power and small-size electronic implementation of PieceWise Affine (PWA) functions defined over n-dimensional domains partitioned into multi-resolution hyperrectangles. The point location problem, which requires most of the computational effort, is solved through an orthogonal search tree, which is easily and efficiently implementable. In the case of domains partitioned into single-resolution hyperrectangles, a simpler and even faster architecture is proposed. After introducing the new architectures, their key features are discussed and compared to previous architectures implementing PWA functions with domains partitioned into different types of polytopes. Case studies concerning the FPGA implementation of so-called explicit Model Predictive Control (MPC) laws for constrained linear systems are used as benchmarks to compare the different architectures.

29 citations

Journal ArticleDOI
TL;DR: In this paper, a model-based approach to real-time reconstruction of the particle density profile in tokamak plasmas is presented, based on a dynamic state estimator.

29 citations

Book ChapterDOI
TL;DR: In this paper, the authors considered discrete-time nonlinear, possibly discontinuous, systems in closed-loop with model predictive controllers and provided a priori sufficient conditions for asymptotic stability in the Lyapunov sense and input-to-state stability (ISS), while allowing for both the system dynamics and the value function of the MPC cost to be discontinuous functions of the state.
Abstract: This paper considers discrete-time nonlinear, possibly discontinuous, systems in closed-loop with model predictive controllers (MPC). The aim of the paper is to provide a priori sufficient conditions for asymptotic stability in the Lyapunov sense and input-to-state stability (ISS), while allowing for both the system dynamics and the value function of the MPC cost to be discontinuous functions of the state. The motivation for this work lies in the recent development of MPC for hybrid systems, which are inherently discontinuous and nonlinear. For a particular class of discontinuous piecewise affine systems, a new MPC set-up based on infinity norms is proposed, which is proven to be ISS to bounded additive disturbances. This ISS result does not require continuity of the system dynamics nor of the MPC value function.

28 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: This letter shows that for a single-input single-output linear time-invariant plant having a real unstable open-loop pole, the overshoot inherent when using any stabilizinglinear time- Invariant feedback controller can be eliminated with a hybrid integrator-gain-based control strategy.
Abstract: This letter shows that for a single-input single-output linear time-invariant plant having a real unstable open-loop pole, the overshoot inherent when using any stabilizing linear time-invariant feedback controller can be eliminated with a hybrid integrator-gain-based control strategy. Key design considerations underlying the presented controller are discussed, and an interpretation of the working mechanism is provided.

28 citations

Journal ArticleDOI
TL;DR: Two resource-aware MPC schemes for discrete-time linear systems subject to state and input constraints are proposed that provide performance guarantees by design and a guaranteed (average) resource utilization, while cleverly allocating these resources in order to maximize the control performance.

28 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: This paper focuses on the stability analysis for switched linear systems under arbitrary switching, and highlights necessary and sufficient conditions for asymptotic stability.
Abstract: During the past several years, there have been increasing research activities in the field of stability analysis and switching stabilization for switched systems. This paper aims to briefly survey recent results in this field. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After a brief review of the stability analysis under restricted switching and the multiple Lyapunov function theory, the switching stabilization problem is studied, and a variety of switching stabilization methods found in the literature are outlined. Then the switching stabilizability problem is investigated, that is under what condition it is possible to stabilize a switched system by properly designing switching control laws. Note that the switching stabilizability problem has been one of the most elusive problems in the switched systems literature. A necessary and sufficient condition for asymptotic stabilizability of switched linear systems is described here.

2,470 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations