scispace - formally typeset
Search or ask a question
Author

Wpmh Maurice Heemels

Bio: Wpmh Maurice Heemels is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Linear system & Hybrid system. The author has an hindex of 59, co-authored 427 publications receiving 16476 citations. Previous affiliations of Wpmh Maurice Heemels include University of California, Santa Barbara.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2006
TL;DR: In this paper, the problem of computing polyhedral invariant sets is formulated as a number of quadratic programming (QP) problems, and a new algorithm is developed to construct the desired polyhedral set.
Abstract: This paper presents a new (geometrical) approach to the computation of polyhedral positively invariant sets for general (possibly discontinuous) nonlinear systems, possibly affected by disturbances. Given a /spl beta/-contractive ellipsoidal set E, the key idea is to construct a polyhedral set that lies between the ellipsoidal sets /spl beta/E and E. A proof that the resulting polyhedral set is positively invariant (and contractive under an additional assumption) is given, and a new algorithm is developed to construct the desired polyhedral set. An advantage of the proposed method is that the problem of computing polyhedral invariant sets is formulated as a number of quadratic programming (QP) problems. The number of QP problems is guaranteed to be finite and therefore, the algorithm has finite termination. An important application of the proposed algorithm is the computation of polyhedral terminal constraint sets for model predictive control based on quadratic costs.

12 citations

Proceedings ArticleDOI
12 Dec 2000
TL;DR: This paper shows that the proposed time-stepping method for the numerical simulation of dynamical systems containing Coulomb friction or relay characteristics is consistent even in the case that the event times accumulate (Zeno behavior).
Abstract: In this paper we will analyze a time-stepping method for the numerical simulation of dynamical systems containing Coulomb friction or relay characteristics. Time-stepping techniques replace the original dynamical system by a sequence of algebraic problems, that have to be solved for each time-step. For relay systems the one-step problem can be reformulated as a linear complementarity problem for which a wide range of solution algorithms already exists. As the event times at which the relay switches are "overstepped," the consistency of the method in the sense of the convergence of a sequence of approximations to an actual solution of the relay system can be put into question. However, in this paper we show that the proposed method is consistent even in the case that the event times accumulate (Zeno behavior). By an example we will illustrate how the method deals with Zeno trajectories.

12 citations

Journal ArticleDOI
TL;DR: In this article, the authors enumerate several solution concepts and compare them on the basis of some examples displaying Zeno behaviour, and the relation to well-posedness is also discussed.

12 citations

Proceedings ArticleDOI
08 Jun 2005
TL;DR: In this article, the stability of discrete-time PWA systems in closed-loop with quadratic cost based model predictive controllers was investigated and sufficient conditions for Lyapunov asymptotic stability were derived.
Abstract: In this paper we investigate the stability of discrete-time PWA systems in closed-loop with quadratic cost based model predictive controllers (MPC) and we derive a priori sufficient conditions for Lyapunov asymptotic stability. We prove that Lyapunov stability can be achieved for the closed-loop system even though the considered Lyapunov function and the system dynamics may he discontinuous. The stabilization conditions are derived using a terminal cost and constraint set method. An S-procedure technique is employed to reduce conservativeness of the stabilization conditions and a linear matrix inequalities set-up is developed in order to calculate the terminal cost. A new algorithm for computing piecewise polyhedral positively invariant sets for PWA systems is also presented. In this manner, the on-line optimization problem associated with MPC leads to a mixed integer quadratic programming problem, which can be solved by standard optimization tools.

12 citations

Journal ArticleDOI
TL;DR: In this article, a reference governor is added to a primal closed-loop controlled system to determine an optimal setpoint in terms of injury reduction and constraint satisfaction by solving a constrained optimisation problem.
Abstract: Today's restraint systems typically include a number of airbags, and a three-point seat belt with load limiter and pretensioner. For the class of real-time controlled restraint systems, the restraint actuator settings are continuously manipulated during the crash. This paper presents a novel control strategy for these systems. The control strategy developed here is based on a combination of model predictive control and reference management, in which a non-linear device - a reference governor (RG) - is added to a primal closed-loop controlled system. This RG determines an optimal setpoint in terms of injury reduction and constraint satisfaction by solving a constrained optimisation problem. Prediction of the vehicle motion, required to predict future constraint violation, is included in the design and is based on past crash data, using linear regression techniques. Simulation results with MADYMO models show that, with ideal sensors and actuators, a significant reduction (45%) of the peak chest acceleration can be achieved, without prior knowledge of the crash. Furthermore, it is shown that the algorithms are sufficiently fast to be implemented online.

12 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: This paper focuses on the stability analysis for switched linear systems under arbitrary switching, and highlights necessary and sufficient conditions for asymptotic stability.
Abstract: During the past several years, there have been increasing research activities in the field of stability analysis and switching stabilization for switched systems. This paper aims to briefly survey recent results in this field. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After a brief review of the stability analysis under restricted switching and the multiple Lyapunov function theory, the switching stabilization problem is studied, and a variety of switching stabilization methods found in the literature are outlined. Then the switching stabilizability problem is investigated, that is under what condition it is possible to stabilize a switched system by properly designing switching control laws. Note that the switching stabilizability problem has been one of the most elusive problems in the switched systems literature. A necessary and sufficient condition for asymptotic stabilizability of switched linear systems is described here.

2,470 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations