scispace - formally typeset
Search or ask a question
Author

Wpmh Maurice Heemels

Bio: Wpmh Maurice Heemels is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Linear system & Hybrid system. The author has an hindex of 59, co-authored 427 publications receiving 16476 citations. Previous affiliations of Wpmh Maurice Heemels include University of California, Santa Barbara.


Papers
More filters
Posted Content
22 Sep 2021
TL;DR: In this article, an event-triggered observer design for linear time-invariant systems is presented, where the measured output is sent to the observer only when a triggering condition is satisfied.
Abstract: We present an event-triggered observer design for linear time-invariant systems, where the measured output is sent to the observer only when a triggering condition is satisfied. We proceed by emulation and we first construct a continuous-time Luenberger observer. We then propose a dynamic rule to trigger transmissions, which only depends on the plant output and an auxiliary scalar state variable. The overall system is modeled as a hybrid system, for which a jump corresponds to an output transmission. We show that the proposed event-triggered observer guarantees global practical asymptotic stability for the estimation error dynamics. Moreover, under mild boundedness conditions on the plant state and its input, we prove that there exists a uniform strictly positive minimum inter-event time between any two consecutive transmissions, guaranteeing that the system does not exhibit Zeno solutions. Finally, the proposed approach is applied to a numerical case study of a lithium-ion battery.

1 citations

01 Jan 2002
TL;DR: Two different lines of research are presented in the study of an industrially relevant problem of impact management, one focused on actual control of the process, while the other is focused on the development of a general methodology for modeling hybrid systems.
Abstract: Two different lines of research are presented in the study of an industrially relevant problem of impact con- trol One is focused on actual control of the process, while the other is focused on the development of a general lan- guage for modeling hybrid systems, of which the case study is an appropriate example

1 citations

09 Jul 2022
TL;DR: In this paper , robust state observers for a class of slope-restricted nonlinear descriptor systems with unknown time-varying parameters belonging to a known set were considered. But the design of robust state observer was not considered.
Abstract: This paper considers the design of robust state observers for a class of slope-restricted nonlinear descriptor systems with unknown time-varying parameters belonging to a known set. The proposed design accounts for process disturbances and measurement noise, while allowing for a trade-off between transient performance and sensitivity to noise and parameter mismatch. We exploit a polytopic structure of the system to derive linear-matrix-inequality-based synthesis conditions for robust parameter-dependent observers for the entire parameter set. In addition, we present (alternative) necessary and sufficient synthesis conditions for an important subclass within the considered class of systems and we show the effectiveness of the design for a numerical case study.

1 citations

Proceedings ArticleDOI
14 Dec 2020
TL;DR: It is shown that, under these conditions, both static and dynamic triggers can be designed using a space-regularization approach such that the closed-loop system ensures an input-to-state practical stability property.
Abstract: In this paper, general conditions for set stabilization of (distributed) event-triggered control systems affected by measurement noises are presented. It is shown that, under these conditions, both static and dynamic triggers can be designed using a space-regularization approach such that the closed-loop system ensures an input-to-state practical stability property. Additionally, by proper choice of the tuning parameters, the system does not exhibit Zeno behavior. Contrary to various results in the literature, the noises do not have to be differentiable. The general results are applied to point stabilization and consensus problems as particular cases. Simulations illustrate our results.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.

3,031 citations

Journal ArticleDOI
TL;DR: This paper focuses on the stability analysis for switched linear systems under arbitrary switching, and highlights necessary and sufficient conditions for asymptotic stability.
Abstract: During the past several years, there have been increasing research activities in the field of stability analysis and switching stabilization for switched systems. This paper aims to briefly survey recent results in this field. First, the stability analysis for switched systems is reviewed. We focus on the stability analysis for switched linear systems under arbitrary switching, and we highlight necessary and sufficient conditions for asymptotic stability. After a brief review of the stability analysis under restricted switching and the multiple Lyapunov function theory, the switching stabilization problem is studied, and a variety of switching stabilization methods found in the literature are outlined. Then the switching stabilizability problem is investigated, that is under what condition it is possible to stabilize a switched system by properly designing switching control laws. Note that the switching stabilizability problem has been one of the most elusive problems in the switched systems literature. A necessary and sufficient condition for asymptotic stabilizability of switched linear systems is described here.

2,470 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations