scispace - formally typeset
Search or ask a question
Author

Wufeng Xue

Bio: Wufeng Xue is an academic researcher from Shenzhen University. The author has contributed to research in topics: Image quality & Computer science. The author has an hindex of 16, co-authored 51 publications receiving 2978 citations. Previous affiliations of Wufeng Xue include Xi'an Jiaotong University & University of Western Ontario.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality.
Abstract: It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

1,211 citations

Posted Content
TL;DR: In this article, a gradient magnitude similarity deviation (GMSD) method was proposed for image quality assessment, where the pixel-wise GMS between the reference and distorted images was combined with a novel pooling strategy to predict accurately perceptual image quality.
Abstract: It is an important task to faithfully evaluate the perceptual quality of output images in many applications such as image compression, image restoration and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy the standard deviation of the GMS map can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy.

742 citations

Journal ArticleDOI
TL;DR: This work proposes a novel BIQA model that utilizes the joint statistics of two types of commonly used local contrast features: 1) the gradient magnitude (GM) map and 2) the Laplacian of Gaussian response.
Abstract: Blind image quality assessment (BIQA) aims to evaluate the perceptual quality of a distorted image without information regarding its reference image. Existing BIQA models usually predict the image quality by analyzing the image statistics in some transformed domain, e.g., in the discrete cosine transform domain or wavelet domain. Though great progress has been made in recent years, BIQA is still a very challenging task due to the lack of a reference image. Considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we propose a novel BIQA model that utilizes the joint statistics of two types of commonly used local contrast features: 1) the gradient magnitude (GM) map and 2) the Laplacian of Gaussian (LOG) response. We employ an adaptive procedure to jointly normalize the GM and LOG features, and show that the joint statistics of normalized GM and LOG features have desirable properties for the BIQA task. The proposed model is extensively evaluated on three large-scale benchmark databases, and shown to deliver highly competitive performance with state-of-the-art BIQA models, as well as with some well-known full reference image quality assessment models.

535 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: The proposed QAC based BIQA method not only has comparable accuracy to those methods using human scored images in learning, but also has merits such as high linearity to human perception of image quality, real-time implementation and availability of image local quality map.
Abstract: General purpose blind image quality assessment (BIQA) has been recently attracting significant attention in the fields of image processing, vision and machine learning. State-of-the-art BIQA methods usually learn to evaluate the image quality by regression from human subjective scores of the training samples. However, these methods need a large number of human scored images for training, and lack an explicit explanation of how the image quality is affected by image local features. An interesting question is then: can we learn for effective BIQA without using human scored images? This paper makes a good effort to answer this question. We partition the distorted images into overlapped patches, and use a percentile pooling strategy to estimate the local quality of each patch. Then a quality-aware clustering (QAC) method is proposed to learn a set of centroids on each quality level. These centroids are then used as a codebook to infer the quality of each patch in a given image, and subsequently a perceptual quality score of the whole image can be obtained. The proposed QAC based BIQA method is simple yet effective. It not only has comparable accuracy to those methods using human scored images in learning, but also has merits such as high linearity to human perception of image quality, real-time implementation and availability of image local quality map.

363 citations

Journal ArticleDOI
TL;DR: A deep multitask relationship learning network (DMTRL) that first obtains expressive and robust cardiac representations with a deep convolution neural network, then models the temporal dynamics of cardiac sequences effectively with two parallel recurrent neural network (RNN) modules, and estimates the cardiac phase with a softmax classifier.

133 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged, and a novel, differentiable error function is proposed.
Abstract: Neural networks are becoming central in several areas of computer vision and image processing and different architectures have been proposed to solve specific problems. The impact of the loss layer of neural networks, however, has not received much attention in the context of image processing: the default and virtually only choice is $\ell _2$ . In this paper, we bring attention to alternative choices for image restoration. In particular, we show the importance of perceptually-motivated losses when the resulting image is to be evaluated by a human observer. We compare the performance of several losses, and propose a novel, differentiable error function. We show that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged.

1,758 citations

Journal ArticleDOI
TL;DR: It is found that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality.
Abstract: It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

1,211 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: A Convolutional Neural Network is described to accurately predict image quality without a reference image to achieve state of the art performance on the LIVE dataset and shows excellent generalization ability in cross dataset experiments.
Abstract: In this work we describe a Convolutional Neural Network (CNN) to accurately predict image quality without a reference image. Taking image patches as input, the CNN works in the spatial domain without using hand-crafted features that are employed by most previous methods. The network consists of one convolutional layer with max and min pooling, two fully connected layers and an output node. Within the network structure, feature learning and regression are integrated into one optimization process, which leads to a more effective model for estimating image quality. This approach achieves state of the art performance on the LIVE dataset and shows excellent generalization ability in cross dataset experiments. Further experiments on images with local distortions demonstrate the local quality estimation ability of our CNN, which is rarely reported in previous literature.

942 citations

Journal ArticleDOI
TL;DR: This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network and goes on to cover Convolutional Neural Network, Recurrent Neural Network (RNN), and Deep Reinforcement Learning (DRL).
Abstract: In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.

922 citations