scispace - formally typeset
Search or ask a question
Author

Wulan Sari

Bio: Wulan Sari is an academic researcher. The author has contributed to research in topics: Osteocalcin & Lactobacillus casei. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 90-day pre-post quasi-experimental study with a control design was conducted on 54 postmenopausal women divided into three intervention groups, namely, the soymilk (SM) group, the SOymilk-honey fermented with Lactobacillus casei subsp. casei R-68 (SMH Lc) group and the SOMMH Lp group.
Abstract: Osteoporosis has been discovered to be a risk factor for menopausal women. Although synbiotics (probiotics and prebiotics) are found in fermented soymilk-honey made using local probiotics, their effect on osteocalcin levels is still unknown. Therefore, this study’s objective was to determine the influence of fermented soymilk-honey from different probiotics on osteocalcin levels. A 90-day pre–post quasi-experimental study with a control design was conducted on 54 postmenopausal women divided into three intervention groups namely, the soymilk (SM) group, the soymilk-honey fermented with Lactobacillus casei subsp. casei R-68 (SMH Lc) group, and the soymilk-honey fermented with Lactobacillus plantarum 1 R 1.3.2 (SMH Lp) group. Participants consumed 100 mL of soymilk (SM) or fermented soymilk with honey (SMH Lc or SMH Lp) for 90 days. At the beginning and end of the study, the blood serum osteocalcin level was measured and subjects’ health status was assessed, such as cholesterol total, random blood glucose, and uric acid levels. Our results presented that in the SMH Lp group, 90 days supplementation of soy-honey milk fermented with Lactobacillus plantarum 1 R 1.3.2 significantly reduced the level of blood serum osteocalcin. Based on these results it is justified to perform more detailed studies on the effect of fermented soy-honey milk on bone health.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors reviewed the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics.
Abstract: In the world of highly processed foods, special attention is drawn to the nutrient composition and safety of consumed food products. Foods fortified with probiotic bacteria confer beneficial effects on human health and are categorized as functional foods. The salubrious activities of probiotics include the synthesis of vital bioactives, prevention of inflammatory diseases, anticancerous, hypocholesterolemic, and antidiarrheal effects. Soy foods are exemplary delivery vehicles for probiotics and prebiotics and there are diverse strategies to enhance their functionality like employing mixed culture fermentation, engineering probiotics, and incorporating prebiotics in fermented soy foods. High potential is ascribed to the concurrent use of probiotics and prebiotics in one product, termed as "synbiotics," which implicates synergy, in which a prebiotic ingredient particularly favors the growth and activity of a probiotic micro-organism. The insights on emended bioactive profile, metabolic role, and potential health benefits of advanced soy-based probiotic and synbiotic hold a promise which can be profitably implemented to meet consumer needs. This article reviews the available knowledge about strategies to enhance the nutraceutical potential, mechanisms, and health-promoting effects of advanced soy-based probiotics. Traditional fermentation merged with diverse strategies to improve the efficiency and health benefits of probiotics considered vital, are also discussed.

9 citations

Journal ArticleDOI
01 Jul 2022-Foods
TL;DR: A narrative review aims to present and analyze ten years’ worth of information on the probiotic and prebiotic potential of honey bees and honey since not many review articles were found discussing this topic.
Abstract: Honey bees and honey, have been the subject of study for decades due to their importance in improving health. At times, some of the probiotics may be transferred to the honey stored in the honeycomb. Consumers may benefit from consuming live-probiotics honey, which can aid in suppressing the reproduction of pathogens in their digestive system. Prebiotics, on the other hand, are mainly carbohydrates that promote the growth of native microflora probiotics in the digestive tract to maintain a healthy environment and improve the gut performance of the host. Therefore, this narrative review aims to present and analyze ten years’ worth of information on the probiotic and prebiotic potential of honey bees and honey since not many review articles were found discussing this topic. Results showed that not many studies have been performed on the probiotic and prebiotic aspects of honey bees and honey. If further research is conducted, isolated probiotics from the bee’s gut combined with honey’s prebiotic properties can be manipulated as potential sources of probiotics and prebiotics for human and animal benefits since they appear to be interrelated and function in symbiosis.

8 citations

Journal ArticleDOI
TL;DR: In this article , the authors highlight the currently available knowledge of the potential protective effects of LAB on preventing or mitigating menopausal symptoms, particularly in terms of maintaining balance in the vaginal microbiota, reducing bone loss, and regulating the nervous system and lipid metabolism.
Abstract: Menopause is a period during which women undergo dramatic hormonal changes. These changes lead to physical and mental discomfort, are greatly afflictive, and critically affect women’s lives. However, the current safe and effective management measures for women undergoing menopause are insufficient. Several probiotic functions of lactic acid bacteria (LAB) have been recognized, including alleviation of lactose intolerance, protection of digestive tract health, activation of the immune system, protection against infections, improvement of nutrient uptake, and improvement of the microbiota. In this review, we highlight the currently available knowledge of the potential protective effects of LAB on preventing or mitigating menopausal symptoms, particularly in terms of maintaining balance in the vaginal microbiota, reducing bone loss, and regulating the nervous system and lipid metabolism. Given the increasing number of women entering menopause and the emphasis on the management of menopausal symptoms, LAB are likely to soon become an indispensable part of clinical/daily care for menopausal women. Herein, we do not intend to provide a comprehensive analysis of each menopausal disorder or to specifically judge the reliability and safety of complementary therapies; rather, we aim to highlight the potential roles of LAB in individualized treatment strategies for the clinical management of menopause.

2 citations

Journal ArticleDOI
01 Mar 2023-Foods
TL;DR: The consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive aglycones, as well as health benefits attributed to their consumption, are addressed in this paper .
Abstract: Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the health effects of two soy beverages, non-fermented (SB) and fermented with Bifidobacterium pseudocatenulatum INIA P815 (FSB), in acyclic and cyclic C57BL/6J aged female mice as a model of menopause and premenopause, respectively, were evaluated and compared.