scispace - formally typeset
Search or ask a question
Author

X. M. Zhang

Bio: X. M. Zhang is an academic researcher. The author has contributed to research in topics: Dipeptidyl peptidase & Kidney metabolism. The author has an hindex of 2, co-authored 2 publications receiving 248 citations.

Papers
More filters
Journal Article
TL;DR: In this paper, the properties and functions of dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5) were discussed, and the role of CD26 in the intestinal and renal handling of proline containing peptides, in cell adhesion, in peptide metabolism, in the immune system and in HIV infection.
Abstract: This review deals with the properties and functions of dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5). This membrane anchored ecto-protease has been identified as the leukocyte antigen CD26. The following aspects of DPP IV/CD26 will be discussed : the structure of DPP IV and the new family of serine proteases to which it belongs, the substrate specificity, the distribution in the human body, specific DPP IV inhibitors and the role of CD26 in the intestinal and renal handling of proline containing peptides, in cell adhesion, in peptide metabolism, in the immune system and in HIV infection. Especially the latest developments in the search for new inhibitors will be reported as well as the discovery of new natural substrates for DPP IV such as the glucagon-like peptides and the chemokines. Finally the therapeutical perspectives for DPP IV inhibitors will be discussed.

131 citations

Journal ArticleDOI
TL;DR: The latest developments in the search for new inhibitors will be reported as well as the discovery of new natural substrates for DPP IV such as the glucagon-like peptides and the chemokines.
Abstract: This review deals with the properties and functions of dipeptidyl peptidase IV (DPP IV, EC 3.4.14.5). This membrane anchored ecto-protease has been identified as the leukocyte antigen CD26. The following aspects of DPP IV/CD26 will be discussed : the structure of DPP IV and the new family of serine proteases to which it belongs, the substrate specificity, the distribution in the human body, specific DPP IV inhibitors and the role of CD26 in the intestinal and renal handling of proline containing peptides, in cell adhesion, in peptide metabolism, in the immune system and in HIV infection. Especially the latest developments in the search for new inhibitors will be reported as well as the discovery of new natural substrates for DPP IV such as the glucagon-like peptides and the chemokines. Finally the therapeutical perspectives for DPP IV inhibitors will be discussed.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of DPP IV/CD26 within the immune system is a combination of its exopeptidase activity and its interactions with different molecules to serve as a co-stimulatory molecule to influence T cell activity and to modulate chemotaxis.
Abstract: Dipeptidyl-peptidase IV/CD26 (DPP IV) is a cell-surface protease belonging to the prolyloligopeptidase family. It selectively removes the N-terminal dipeptide from peptides with proline or alanine in the second position. Apart from its catalytic activity, it interacts with several proteins, for instance, adenosine deaminase, the HIV gp120 protein, fibronectin, collagen, the chemokine receptor CXCR4, and the tyrosine phosphatase CD45. DPP IV is expressed on a specific set of T lymphocytes, where it is up-regulated after activation. It is also expressed in a variety of tissues, primarily on endothelial and epithelial cells. A soluble form is present in plasma and other body fluids. DPP IV has been proposed as a diagnostic or prognostic marker for various tumors, hematological malignancies, immunological, inflammatory, psychoneuroendocrine disorders, and viral infections. DPP IV truncates many bioactive peptides of medical importance. It plays a role in glucose homeostasis through proteolytic inactivation of...

865 citations

Journal ArticleDOI
TL;DR: Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4.

566 citations

Journal ArticleDOI
TL;DR: It is argued that a multidisciplinary approach might reveal the molecular events underlying the role of CD26 in HIV infection and immune, inflammatory and endocrine responses.

465 citations

Journal ArticleDOI
TL;DR: The focus of this review is the structure and function of CD 26 and the influence of its ligand binding activity on T‐cell proliferation and the T cell costimulatory activity of CD26.
Abstract: CD26 has proved interesting in the fields of immunology, endocrinology, cancer biology and nutrition owing to its ubiquitous and unusual enzyme activity. This dipeptidyl aminopeptidase (DPP IV) activity generally inactivates but sometimes alters or enhances the biological activities of its peptide substrates, which include several chemokines. CD26 costimulates both the CD3 and the CD2 dependent T-cell activation and tyrosine phosphorylation of TCR/CD3 signal transduction pathway proteins. CD26 in vivo has integral membrane protein and soluble forms. Soluble CD26 is at significant levels in serum, these levels alter in many diseases and soluble CD26 can modulate in vitro T-cell proliferation. CD26, being an adenosine deaminase binding protein (ADAbp), functions as a receptor for ADA on lymphocytes. The focus of this review is the structure and function of CD26 and the influence of its ligand binding activity on T-cell proliferation and the T cell costimulatory activity of CD26.

351 citations

Journal ArticleDOI
TL;DR: To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β‐cell growth and function are reported.
Abstract: The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

223 citations