scispace - formally typeset
Search or ask a question
Author

X.S. Yao

Bio: X.S. Yao is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Opto-electronic oscillator & Polarization mode dispersion. The author has an hindex of 19, co-authored 32 publications receiving 2226 citations. Previous affiliations of X.S. Yao include Tianjin University & University of Southern California.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe a novel photonic oscillator that converts continuous-light energy into stable and spectrally pure microwave signals, which can be used for high-frequency reference regeneration and distribution, high gain frequency multiplication, comb frequency and pulse generation, carrier recovery, and clock recovery.
Abstract: We describe a novel photonic oscillator that converts continuous-light energy into stable and spectrally pure microwave signals. This optoelectronic oscillator (OEO) consists of a pump laser and a feedback circuit including an intensity modulator, an optical-fiber delay line, a photodetector an amplifier, and a filter. We present the results of a quasi-linear theory for describing the properties of the oscillator and their experimental verifications. Our findings indicate that the OEO can generate ultrastable, spectrally pure microwave-reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 KHz. We show that the OEO is a special voltage-controlled oscillator with an optical-output port and can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and a phase-locked loop. Other OEO applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb frequency and pulse generation, carrier recovery, and clock recovery.

562 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe and demonstrate a multiloop technique for singlemode selection in an optoelectronic oscillator (OEO) and demonstrate the first fiber-optic implementation of the carrier suppression technique to further reduce the close-to-carrier phase noise of the oscillator.
Abstract: We describe and demonstrate a multiloop technique for single-mode selection in an optoelectronic oscillator (OEO). We present experimental results of a dual loop OEO, free running at 10 GHz, that has the lowest phase noise (-140 dBc/Hz at 10 kHz from carrier) of all free-running room-temperature oscillators to date. Finally, we demonstrate the first fiber-optic implementation of the carrier suppression technique to further reduce the close-to-carrier phase noise of the oscillator by at least 20 dB.

457 citations

Journal ArticleDOI
TL;DR: In this article, an electro-optical oscillator capable of generating high stability optical signals at frequencies up to 70 GHz was described, and a comb of stable frequencies was produced by modelocking the oscillator.
Abstract: The authors describe an electro-optical oscillator capable of generating high stability optical signals at frequencies up to 70 GHz. Signals as high as 9.2 GHz were generated with an optical wavelength of 1310 nm using the oscillator, and a comb of stable frequencies was produced by modelocking the oscillator. >

226 citations

Journal ArticleDOI
TL;DR: In this paper, a coupled optoelectronic oscillators (COEO) constructed with a semiconductor optical amplifier-based ring laser and a colliding pulse mode-locked laser was used to generate short optical pulses and spectrally pure radio frequency (RF) signals.
Abstract: We present experimental results of coupled optoelectronic oscillators (COEO) constructed with a semiconductor optical amplifier-based ring laser and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure radio frequency (RF) signals. With these devices, we obtained optical pulses as short as 6.2 ps and RF signals as high, in frequency, as 18.2 GHz with a spectral purity comparable with an HP83731B synthesizer. These experiments demonstrate that COEO's are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe and demonstrate a novel device in which a microwave oscillation and an optical oscillation are generated and directly coupled with each other, which is capable of simultaneously generating stable optical pulses down to the subpicosecond level and spectrally pure microwave signals at frequencies greater than 70 GHz.
Abstract: We describe and demonstrate a novel device in which a microwave oscillation and an optical oscillation are generated and directly coupled with each other. With the mutual influence between the microwave and the optical oscillations, we project that this device is capable of simultaneously generating stable optical pulses down to the subpicosecond level and spectrally pure microwave signals at frequencies greater than 70 GHz.

182 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an optoelectronic microwave oscillator consisting of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter is described.
Abstract: We describe a novel oscillator that converts continuous light energy into stable and spectrally pure microwave signals. This optoelectronic microwave oscillator consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasi-linear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the optoelectronic microwave oscillator can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.

1,085 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed overview of stimulated Brillouin scattering (SBS) in single-mode optical fibers is presented, with a particular emphasis on analytical analysis of the backreflected power and SBS threshold in optical fibers with various index profiles.
Abstract: We present a detailed overview of stimulated Brillouin scattering (SBS) in single-mode optical fibers. The review is divided into two parts. In the first part, we discuss the fundamentals of SBS. A particular emphasis is given to analytical calculation of the backreflected power and SBS threshold (SBST) in optical fibers with various index profiles. For this, we consider acousto-optic interaction in the guiding geometry and derive the modal overlap integral, which describes the dependence of the Brillouin gain on the refractive index profile of the optical fiber. We analyze Stokes backreflected power initiated by thermal phonons, compare values of the SBST calculated from different approximations, and discuss the SBST dependence on the fiber length. We also review an analytical approach to calculate the gain of Brillouin fiber amplifiers (BFAs) in the regime of pump depletion. In the high-gain regime, fiber loss is a nonnegligible effect and needs to be accounted for along with the pump depletion. We provide an accurate analytic expression for the BFA gain and show results of experimental validation. Finally, we review methods to suppress SBS including index-controlled acoustic guiding or segmented fiber links. The second part of the review deals with recent advances in fiber-optic applications where SBS is a relevant effect. In particular, we discuss the impact of SBS on the radio-over-fiber technology, enhancement of the SBS efficiency in Raman-pumped fibers, slow light due to SBS and SBS-based optical delay lines, Brillouin fiber-optic sensors, and SBS mitigation in high-power fiber lasers, as well as SBS in multimode and microstructured fibers. A detailed derivation of evolutional equations in the guided wave geometry as well as key physical relations are given in appendices.

576 citations

Journal ArticleDOI
TL;DR: In this article, the authors review photonic applications of dielectric whispering-gallery mode (WGM) resonators and trace the growth of the technology from experiments with levitating droplets of aerosols to ultrahigh-Q solid state crystalline and integrated on-chip microresonators.
Abstract: We review photonic applications of dielectric whispering-gallery mode (WGM) resonators-tracing the growth of the technology from experiments with levitating droplets of aerosols to ultrahigh-Q solid state crystalline and integrated on-chip microresonators.

571 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a novel photonic oscillator that converts continuous-light energy into stable and spectrally pure microwave signals, which can be used for high-frequency reference regeneration and distribution, high gain frequency multiplication, comb frequency and pulse generation, carrier recovery, and clock recovery.
Abstract: We describe a novel photonic oscillator that converts continuous-light energy into stable and spectrally pure microwave signals. This optoelectronic oscillator (OEO) consists of a pump laser and a feedback circuit including an intensity modulator, an optical-fiber delay line, a photodetector an amplifier, and a filter. We present the results of a quasi-linear theory for describing the properties of the oscillator and their experimental verifications. Our findings indicate that the OEO can generate ultrastable, spectrally pure microwave-reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 KHz. We show that the OEO is a special voltage-controlled oscillator with an optical-output port and can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and a phase-locked loop. Other OEO applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb frequency and pulse generation, carrier recovery, and clock recovery.

562 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe and demonstrate a multiloop technique for singlemode selection in an optoelectronic oscillator (OEO) and demonstrate the first fiber-optic implementation of the carrier suppression technique to further reduce the close-to-carrier phase noise of the oscillator.
Abstract: We describe and demonstrate a multiloop technique for single-mode selection in an optoelectronic oscillator (OEO). We present experimental results of a dual loop OEO, free running at 10 GHz, that has the lowest phase noise (-140 dBc/Hz at 10 kHz from carrier) of all free-running room-temperature oscillators to date. Finally, we demonstrate the first fiber-optic implementation of the carrier suppression technique to further reduce the close-to-carrier phase noise of the oscillator by at least 20 dB.

457 citations