scispace - formally typeset
Search or ask a question
Author

Xavier Periole

Bio: Xavier Periole is an academic researcher from University of Groningen. The author has contributed to research in topics: Photosystem II & Respiratory chain. The author has an hindex of 31, co-authored 45 publications receiving 6848 citations. Previous affiliations of Xavier Periole include Rockefeller University & Icahn School of Medicine at Mount Sinai.

Papers
More filters
Journal ArticleDOI
TL;DR: A new CG model for proteins as an extension of the MARTINI force field is developed and effectively reproduces peptide-lipid interactions and the partitioning of amino acids and peptides in lipid bilayers.
Abstract: Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on length and time scales that are 2–3 orders of magnitude larger compared to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale. We developed a new CG model for proteins as an extension of the MARTINI force field. Here, we validate the model for its use in peptide-bilayer systems. In order to validate the model, we calculated the potential of mean force for each amino acid as a function of its distance from the center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid association constants, the partitioning of a series of model pentapeptides, the partitioning and orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyris...

2,173 citations

Journal ArticleDOI
TL;DR: Improve some of the bonded terms in the Martini protein force field that lead to a more realistic length of α-helices and to improved numerical stability for polyalanine and glycine repeats.
Abstract: The Martini coarse-grained force field has been successfully used for simulating a wide range of (bio)molecular systems. Recent progress in our ability to test the model against fully atomistic force fields, however, has revealed some shortcomings. Most notable, phenylalanine and proline were too hydrophobic, and dimers formed by polar residues in apolar solvents did not bind strongly enough. Here, we reparametrize these residues either through reassignment of particle types or by introducing embedded charges. The new parameters are tested with respect to partitioning across a lipid bilayer, membrane binding of Wimley–White peptides, and dimerization free energy in solvents of different polarity. In addition, we improve some of the bonded terms in the Martini protein force field that lead to a more realistic length of α-helices and to improved numerical stability for polyalanine and glycine repeats. The new parameter set is denoted Martini version 2.2.

1,112 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity by combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane.
Abstract: The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.

656 citations

Journal ArticleDOI
TL;DR: The results for this series of tests indicate that ELNEDIN models allow microsecond time-scale molecular dynamics simulations to be carried out readily, that large biological entities such as the viral capsid of the cowpea mosaic virus can be stably modeled as assemblies of independent ELNedIN models, and that ELnEDin models show significant promise for modeling protein-protein association processes.
Abstract: Structure-based and physics-based coarse-grained molecular force fields have become attractive approaches to gain mechanistic insight into the function of large biomolecular assemblies. Here, we study how both approaches can be combined into a single representation, that we term ELNEDIN. In this representation an elastic network is used as a structural scaffold to describe and maintain the overall shape of a protein and a physics-based coarse-grained model (MARTINI-2.1) is used to describe both inter- and intramolecular interactions in the system. The results show that when used in molecular dynamics simulations ELNEDIN models can be built so that the resulting structural and dynamical properties of a protein, including its collective motions, are comparable to those obtained using atomistic protein models. We then evaluate the behavior of such models in (1) long, microsecond time-scale, simulations, (2) the modeling of very large macromolecular assemblies, a viral capsid, and (3) the study of a protein-protein association process, the reassembly of the ROP homodimer. The results for this series of tests indicate that ELNEDIN models allow microsecond time-scale molecular dynamics simulations to be carried out readily, that large biological entities such as the viral capsid of the cowpea mosaic virus can be stably modeled as assemblies of independent ELNEDIN models, and that ELNEDIN models show significant promise for modeling protein-protein association processes.

540 citations

Journal ArticleDOI
TL;DR: An overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity, are provided.
Abstract: Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling.

464 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The optimal simulation protocol for each program has been implemented in CHARMM-GUI and is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.
Abstract: Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order para...

2,182 citations

Journal ArticleDOI
TL;DR: A new CG model for proteins as an extension of the MARTINI force field is developed and effectively reproduces peptide-lipid interactions and the partitioning of amino acids and peptides in lipid bilayers.
Abstract: Many biologically interesting phenomena occur on a time scale that is too long to be studied by atomistic simulations. These phenomena include the dynamics of large proteins and self-assembly of biological materials. Coarse-grained (CG) molecular modeling allows computer simulations to be run on length and time scales that are 2–3 orders of magnitude larger compared to atomistic simulations, providing a bridge between the atomistic and the mesoscopic scale. We developed a new CG model for proteins as an extension of the MARTINI force field. Here, we validate the model for its use in peptide-bilayer systems. In order to validate the model, we calculated the potential of mean force for each amino acid as a function of its distance from the center of a dioleoylphosphatidylcholine (DOPC) lipid bilayer. We then compared amino acid association constants, the partitioning of a series of model pentapeptides, the partitioning and orientation of WALP23 in DOPC lipid bilayers and a series of KALP peptides in dimyris...

2,173 citations

Journal ArticleDOI
TL;DR: The membrane raft hypothesis formalized a physicochemical principle for a subtype of lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed membrane domains that selectively recruit certain lipids and proteins.
Abstract: Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.

1,349 citations

Journal ArticleDOI
TL;DR: Evidence is provided that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead and, on the basis of this in-depth evaluation, potential new directions for research onCurcuminoids are discussed.
Abstract: Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

1,191 citations