scispace - formally typeset
Search or ask a question
Author

Xenofon Koutsoukos

Bio: Xenofon Koutsoukos is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Cyber-physical system & Hybrid system. The author has an hindex of 45, co-authored 390 publications receiving 8146 citations. Previous affiliations of Xenofon Koutsoukos include PARC & University of Notre Dame.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper designs a consensus protocol based on local information that is resilient to worst-case security breaches, assuming the compromised nodes have full knowledge of the network and the intentions of the other nodes, and develops a novel graph-theoretic property referred to as network robustness.
Abstract: This paper addresses the problem of resilient in-network consensus in the presence of misbehaving nodes. Secure and fault-tolerant consensus algorithms typically assume knowledge of nonlocal information; however, this assumption is not suitable for large-scale dynamic networks. To remedy this, we focus on local strategies that provide resilience to faults and compromised nodes. We design a consensus protocol based on local information that is resilient to worst-case security breaches, assuming the compromised nodes have full knowledge of the network and the intentions of the other nodes. We provide necessary and sufficient conditions for the normal nodes to reach asymptotic consensus despite the influence of the misbehaving nodes under different threat assumptions. We show that traditional metrics such as connectivity are not adequate to characterize the behavior of such algorithms, and develop a novel graph-theoretic property referred to as network robustness. Network robustness formalizes the notion of redundancy of direct information exchange between subsets of nodes in the network, and is a fundamental property for analyzing the behavior of certain distributed algorithms that use only local information.

590 citations

Journal ArticleDOI
TL;DR: It is found that non-causal feature selection methods cannot be interpreted causally even when they achieve excellent predictivity, so only local causal techniques should be used when insight into causal structure is sought.
Abstract: We present an algorithmic framework for learning local causal structure around target variables of interest in the form of direct causes/effects and Markov blankets applicable to very large data sets with relatively small samples. The selected feature sets can be used for causal discovery and classification. The framework (Generalized Local Learning, or GLL) can be instantiated in numerous ways, giving rise to both existing state-of-the-art as well as novel algorithms. The resulting algorithms are sound under well-defined sufficient conditions. In a first set of experiments we evaluate several algorithms derived from this framework in terms of predictivity and feature set parsimony and compare to other local causal discovery methods and to state-of-the-art non-causal feature selection methods using real data. A second set of experimental evaluations compares the algorithms in terms of ability to induce local causal neighborhoods using simulated and resimulated data and examines the relation of predictivity with causal induction performance. Our experiments demonstrate, consistently with causal feature selection theory, that local causal feature selection methods (under broad assumptions encompassing appropriate family of distributions, types of classifiers, and loss functions) exhibit strong feature set parsimony, high predictivity and local causal interpretability. Although non-causal feature selection methods are often used in practice to shed light on causal relationships, we find that they cannot be interpreted causally even when they achieve excellent predictivity. Therefore we conclude that only local causal techniques should be used when insight into causal structure is sought. In a companion paper we examine in depth the behavior of GLL algorithms, provide extensions, and show how local techniques can be used for scalable and accurate global causal graph learning.

521 citations

Book ChapterDOI
30 Sep 2009
TL;DR: This paper provides taxonomies for mobile wireless sensors and localization, including common architectures, measurement techniques, and localization algorithms, and concludes with a description of real-world mobile sensor applications that require position estimation.
Abstract: Over the past decade we have witnessed the evolution of wireless sensor networks, with advancements in hardware design, communication protocols, resource efficiency, and other aspects. Recently, there has been much focus on mobile sensor networks, and we have even seen the development of small-profile sensing devices that are able to control their own movement. Although it has been shown that mobility alleviates several issues relating to sensor network coverage and connectivity, many challenges remain. Among these, the need for position estimation is perhaps the most important. Not only is localization required to understand sensor data in a spatial context, but also for navigation, a key feature of mobile sensors. In this paper, we present a survey on localization methods for mobile wireless sensor networks. We provide taxonomies for mobile wireless sensors and localization, including common architectures, measurement techniques, and localization algorithms. We conclude with a description of real-world mobile sensor applications that require position estimation.

350 citations

Journal ArticleDOI
01 Jul 2000
TL;DR: The supervisory control of hybrid systems is introduced and discussed at length and the interaction between the continuous and discrete dynamics is highlighted, which is the cornerstone of any hybrid system study.
Abstract: In this paper, the supervisory control of hybrid systems is introduced and discussed at length. Such control systems typically arise in the computer control of continuous processes, for example, in manufacturing and chemical processes, in transportation systems, and in communication networks. A functional architecture of hybrid control systems consisting of a continuous plant, a discrete-event controller, and an interface is used to introduce and describe analysis and synthesis concepts and approaches. Our approach highlights the interaction between the continuous and discrete dynamics, which is the cornerstone of any hybrid system study. Discrete abstractions are used to approximate the continuous plant. Properties of the discrete abstractions to be appropriate representations of the continuous plant are presented, and important concepts such as determinism and controllability are discussed. Supervisory control design methodologies are presented to satisfy control specifications described by formal languages. Several examples are used throughout the paper to illustrate our approach.

334 citations

Journal ArticleDOI
01 Jan 2012
TL;DR: A passivity-based design approach that decouples stability from timing uncertainties caused by networking and computation is presented, and cross-domain abstractions that provide effective solution for model-based fully automated software synthesis and high-fidelity performance analysis are described.
Abstract: System integration is the elephant in the china store of large-scale cyber-physical system (CPS) design. It would be hard to find any other technology that is more undervalued scientifically and at the same time has bigger impact on the presence and future of engineered systems. The unique challenges in CPS integration emerge from the heterogeneity of components and interactions. This heterogeneity drives the need for modeling and analyzing cross-domain interactions among physical and computational/networking domains and demands deep understanding of the effects of heterogeneous abstraction layers in the design flow. To address the challenges of CPS integration, significant progress needs to be made toward a new science and technology foundation that is model based, precise, and predictable. This paper presents a theory of composition for heterogeneous systems focusing on stability. Specifically, the paper presents a passivity-based design approach that decouples stability from timing uncertainties caused by networking and computation. In addition, the paper describes cross-domain abstractions that provide effective solution for model-based fully automated software synthesis and high-fidelity performance analysis. The design objectives demonstrated using the techniques presented in the paper are group coordination for networked unmanned air vehicles (UAVs) and high-confidence embedded control software design for a quadrotor UAV. Open problems in the area are also discussed, including the extension of the theory of compositional design to guarantee properties beyond stability, such as safety and performance.

307 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade.
Abstract: With the continuous increase in complexity and expense of industrial systems, there is less tolerance for performance degradation, productivity decrease, and safety hazards, which greatly necessitates to detect and identify any kinds of potential abnormalities and faults as early as possible and implement real-time fault-tolerant operation for minimizing performance degradation and avoiding dangerous situations. During the last four decades, fruitful results have been reported about fault diagnosis and fault-tolerant control methods and their applications in a variety of engineering systems. The three-part survey paper aims to give a comprehensive review of real-time fault diagnosis and fault-tolerant control, with particular attention on the results reported in the last decade. In this paper, fault diagnosis approaches and their applications are comprehensively reviewed from model- and signal-based perspectives, respectively.

2,026 citations