scispace - formally typeset
Search or ask a question
Author

Xi-Lin Wang

Bio: Xi-Lin Wang is an academic researcher from Nanjing University. The author has contributed to research in topics: Physics & Quantum entanglement. The author has an hindex of 23, co-authored 59 publications receiving 3248 citations. Previous affiliations of Xi-Lin Wang include Nankai University & Center for Excellence in Education.


Papers
More filters
Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work uses photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develops a method to project and discriminate hyper-ENTangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees offreedom.
Abstract: The quantum teleportation of composite quantum states of a single photon encoded in both spin and orbital angular momentum is achieved, with a teleportation fidelity above the classical limit, by quantum non-demolition measurement assisted discrimination of the Bell states describing the entanglement of the two degrees of freedom. In the process known as quantum teleportation, quantum information encoded in a quantum particle, for example a photon, is transferred from one place to the other without ever moving the photon. Although quantum teleportation has been demonstrated with a variety of different systems, all have so far been limited in one crucial aspect: they only allow teleporting one degree of freedom. Here, Nai-Le Liu and colleagues demonstrate quantum teleportation of two degrees of freedom — spin and orbital angular momentum — in a single photon. Their experimental implementation is very complex and entails various innovative techniques, most notably a hybrid Bell-state measurement scheme. The intricacy of this scheme illustrates how difficult it will be to implement quantum teleportation of more complex quantum systems with more degrees of freedom. But this work represents a first and significant step in this direction. Quantum teleportation1 provides a ‘disembodied’ way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication2, distributed quantum networks3 and measurement-based quantum computation4,5. There have been numerous demonstrations of teleportation in different physical systems such as photons6,7,8, atoms9, ions10,11, electrons12 and superconducting circuits13. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom—internal and external—and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin–orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

608 citations

Journal ArticleDOI
TL;DR: This work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
Abstract: An entangled polarization state of ten photons sets a new record for multiphoton entanglement.

524 citations

Journal ArticleDOI
TL;DR: A computer-generated hologram is introduced onto SLM for performing the beam conversion and optical realization of a variety of polarization configurations confirms the reliability and flexibility of the method.
Abstract: We describe a convenient approach for generating arbitrary vector beams in a 4-f system with a spatial light modulator (SLM) and a common path interferometric arrangement. A computer-generated hologram is introduced onto SLM for performing the beam conversion. Optical realization of a variety of polarization configurations confirms the reliability and flexibility of our method.

439 citations

Journal ArticleDOI
TL;DR: High-stability interferometers for reversible quantum logic operations between the photons' different degrees of freedom with precision and efficiencies close to unity are developed, enabling simultaneous readout of 2^{18}=262 144 outcome combinations of the 18-qubit state.
Abstract: Full control of multiple degrees of freedom of multiple particles represents a fundamental ability for quantum information processing. We experimentally demonstrate an 18-qubit Greenberger-Horne-Zeilinger entanglement by simultaneous exploiting three different degrees of freedom of six photons, including their paths, polarization, and orbital angular momentum. We develop high-stability interferometers for reversible quantum logic operations between the photons' different degrees of freedom with precision and efficiencies close to unity, enabling simultaneous readout of 2^{18}=262 144 outcome combinations of the 18-qubit state. A state fidelity of 0.708±0.016 is measured, confirming the genuine entanglement of all 18 qubits.

301 citations

Journal ArticleDOI
TL;DR: In this article, a degenerate telecommunication wavelength entangled-photon source from an ultrafast pulsed laser pumped spontaneous parametric down-conversion (SPDC) was designed and realized, which shows simultaneously 97% heralding efficiency and 96% indistinguishability between independent single photons without narrowband filtering.
Abstract: Entangled-photon sources with simultaneously near-unity heralding efficiency and indistinguishability are the fundamental elements for scalable photonic quantum technologies. We design and realize a degenerate telecommunication wavelength entangled-photon source from an ultrafast pulsed laser pumped spontaneous parametric down-conversion (SPDC), which shows simultaneously 97% heralding efficiency and 96% indistinguishability between independent single photons without narrow-band filtering. Such a beamlike and frequency-uncorrelated SPDC source allows generation of the first 12-photon genuine entanglement with a state fidelity of 0.572±0.024. We further demonstrate a blueprint of scalable scattershot boson sampling using 12 SPDC sources and a 12×12 mode interferometer for three-, four-, and five-boson sampling, which yields count rates more than 4 orders of magnitude higher than all previous SPDC experiments.

278 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
Qiwen Zhan1
TL;DR: An overview of the recent developments in the field of cylindrical vector beams is provided in this paper, where the authors also discuss the potential of using these beams in other fields.
Abstract: An overview of the recent developments in the field of cylindrical vector beams is provided. As one class of spatially variant polarization, cylindrical vector beams are the axially symmetric beam solution to the full vector electromagnetic wave equation. These beams can be generated via different active and passive methods. Techniques for manipulating these beams while maintaining the polarization symmetry have also been developed. Their special polarization symmetry gives rise to unique high-numerical-aperture focusing properties that find important applications in nanoscale optical imaging and manipulation. The prospects for cylindrical vector beams and their applications in other fields are also briefly discussed.

2,361 citations

Journal ArticleDOI
13 Sep 2017-Nature
TL;DR: The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers.
Abstract: Recent progress implies that a crossover between machine learning and quantum information processing benefits both fields. Traditional machine learning has dramatically improved the benchmarking an ...

2,162 citations

01 Jan 1973
TL;DR: In this paper, the authors present a reformulation of quantum theory in a form believed suitable for application to general relativity, from which the conventional interpretation of quantum mechanics can be deduced.
Abstract: The task of quantizing general relativity raises serious questions about the meaning of the present formulation and interpretation of quantum mechanics when applied to so fundamental a structure as the space-time geometry itself. This paper seeks to clarify the foundations of quantum mechanics. It presents a reformulation of quantum theory in a form believed suitable for application to general relativity. The aim is not to deny or contradict the conventional formulation of quantum theory, which has demonstrated its usefulness in an overwhelming variety of problems, but rather to supply a new, more general and complete formulation, from which the conventional interpretation can be deduced. The relationship of this new formulation to the older formulation is therefore that of a metatheory to a theory, that is, it is an underlying theory in which the nature and consistency, as well as the realm of applicability, of the older theory can be investigated and clarified.

2,091 citations