scispace - formally typeset
Search or ask a question
Author

Xi Zhang

Bio: Xi Zhang is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Exoplanet & Planet. The author has an hindex of 28, co-authored 93 publications receiving 2664 citations. Previous affiliations of Xi Zhang include California Institute of Technology & University of Arizona.
Topics: Exoplanet, Planet, Atmosphere, Brown dwarf, Jupiter


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compare three spectral retrieval methods: optimal estimation, differential evolution Markov chain Monte Carlo, and bootstrap Monte Carlo on a synthetic water-dominated hot Jupiter and find that the three approaches agree for high spectral resolution, high signal-to-noise data expected to come from potential future spaceborne missions, but disagree for low-resolution, low signal tonoise spectra representative of current observations.
Abstract: Exoplanet atmosphere spectroscopy enables us to improve our understanding of exoplanets just as remote sensing in our own solar system has increased our understanding of the solar system bodies. The challenge is to quantitatively determine the range of temperatures and molecular abundances allowed by the data, which is often difficult given the low information content of most exoplanet spectra that commonly leads to degeneracies in the interpretation. A variety of spectral retrieval approaches have been applied to exoplanet spectra, but no previous investigations have sought to compare these approaches. We compare three different retrieval methods: optimal estimation, differential evolution Markov chain Monte Carlo, and bootstrap Monte Carlo on a synthetic water-dominated hot Jupiter. We discuss expectations of uncertainties in abundances and temperatures given current and potential future observations. In general, we find that the three approaches agree for high spectral resolution, high signal-to-noise data expected to come from potential future spaceborne missions, but disagree for low-resolution, low signal-to-noise spectra representative of current observations. We also compare the results from a parameterized temperature profile versus a full classical Level-by-Level approach and discriminate in which situations each of these approaches is applicable. Furthermore, we discuss the implications of our models for the inferred C-to-O ratios of exoplanetary atmospheres. Specifically, we show that in the observational limit of a few photometric points, the retrieved C/O is biased toward values near solar and near one simply due to the assumption of uninformative priors.

338 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used nonlinear optimal estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers) with respect to geophysical parameters, focusing specifically on temperature and composition.
Abstract: It has been shown that spectroscopy of transiting extrasolar planets can potentially provide a wealth of information about their atmospheres. Herein, we set up the inverse problem in spectroscopic retrieval. We use nonlinear optimal estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers). The formulation quantifies the degrees of freedom and information content of the spectrum with respect to geophysical parameters; herein, we focus specifically on temperature and composition. First, we apply the technique to synthetic near-infrared spectra and explore the influence of spectral signal-to-noise ratio and resolution (the two important parameters when designing a future instrument) on the information content of the data. As expected, we find that the number of retrievable parameters increases with increasing signal-to-noise ratio and resolution, although the gains quickly level off for large values. Second, we apply the methods to the previously studied dayside near-infrared emission spectrum of HD 189733b and compare the results of our retrieval with those obtained by others.

189 citations

Journal ArticleDOI
01 Feb 2012-Icarus
TL;DR: Venus Express measurements of the vertical profiles of SO and SO_2 in the middle atmosphere of Venus provide an opportunity to revisit the sulfur chemistry above the middle cloud top (∼58 km) as mentioned in this paper.

161 citations

Journal ArticleDOI
TL;DR: In this article, the authors used non-linear optimal estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers 1976, 2000) of transiting extrasolar planets.
Abstract: It has been shown that spectroscopy of transiting extrasolar planets can potentially provide a wealth of information about their atmospheres. Herein, we set up the inverse problem in spectroscopic retrieval. We use non-linear optimal estimation to retrieve the atmospheric state (pioneered for Earth sounding by Rodgers 1976, 2000). The formulation quantifies the the degrees-of-freedom and information content of the spectrum with respect to geophysical parameters; herein, we focus specifically on temperature and composition. First, we apply the technique to synthetic near infrared spectra, and explore the influence of spectral signal-to-noise ratio and resolution (the two important parameters when designing a future instrument) on the information content of the data. As expected, we find that the number of retrievable parameters increase with increasing signal-to-noise and resolution, although the gains quickly asymptote for large values. Second, we apply the methods to the previously studied atmosphere of HD198733b, and compare the results of our retrieval with those obtained by others.

154 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the aerosol composition of giant exoplanets observed in transmission is dominated by silicates and hydrocarbons, and that spectral signatures of condensed silicates in the mid-infrared are most prominent for hot (>1,600) and low-gravity (<10,m) objects.
Abstract: Aerosols are common in the atmospheres of exoplanets across a wide swath of temperatures, masses and ages1–3. These aerosols strongly impact observations of transmitted, reflected and emitted light from exoplanets, obfuscating our understanding of exoplanet thermal structure and composition4–6. Knowing the dominant aerosol composition would facilitate interpretations of exoplanet observations and theoretical understanding of their atmospheres. A variety of compositions have been proposed, including metal oxides and sulfides, iron, chromium, sulfur and hydrocarbons7–11. However, the relative contributions of these species to exoplanet aerosol opacity is unknown. Here we show that the aerosol composition of giant exoplanets observed in transmission is dominated by silicates and hydrocarbons. By constraining an aerosol microphysics model with trends in giant exoplanet transmission spectra, we find that silicates dominate aerosol opacity above planetary equilibrium temperatures of 950 K due to low nucleation energy barriers and high elemental abundances, while hydrocarbon aerosols dominate below 950 K due to an increase in methane abundance. Our results are robust to variations in planet gravity and atmospheric metallicity within the range of most giant transiting exoplanets. We predict that spectral signatures of condensed silicates in the mid-infrared are most prominent for hot (>1,600 K), low-gravity (<10 m s−2) objects. A detailed microphysical model shows that there are two distinct regimes in the aerosol composition of exoplanetary atmospheres: silicates dominate at atmospheric temperatures above 950 K, whereas hydrocarbons prevail for temperatures below 950 K.

134 citations


Cited by
More filters
Book
01 May 2011
TL;DR: In this paper, the authors present an overview of the solar system and its evolution, including the formation and evolution of stars, asteroids, and free-floating planets, as well as their internal and external structures.
Abstract: 1. Introduction 2. Radial velocities 3. Astrometry 4. Timing 5. Microlensing 6. Transits 7. Imaging 8. Host stars 9. Brown dwarfs and free-floating planets 10. Formation and evolution 11. Interiors and atmospheres 12. The Solar System Appendixes References Index.

527 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets.
Abstract: We explore how well spectra from the James Webb Space Telescope (JWST) will likely constrain bulk atmospheric properties of transiting exoplanets. We start by modeling the atmospheres of archetypal hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets with atmospheres that are clear, cloudy, or of high mean molecular weight (HMMW). Next we simulate the λ = 1–11 μm transmission and emission spectra of these systems for several JWST instrument modes for single-transit or single-eclipse events. We then perform retrievals to determine how well temperatures and molecular mixing ratios (CH4, CO, CO2, H2O, NH3) can be constrained. We find that λ = 1–2.5 μm transmission spectra will often constrain the major molecular constituents of clear solar-composition atmospheres well. Cloudy or HMMW atmospheres will often require full 1–11 μm spectra for good constraints, and emission data may be more useful in cases of sufficiently high Fp and high Fp/F*. Strong temperature inversions in the solar-composition hot-Jupiter atmosphere should be detectable with 1–2.5+ μm emission spectra, and 1–5+ μm emission spectra will constrain the temperature–pressure profiles of warm planets. Transmission spectra over 1–5+ μm will constrain [Fe/H] values to better than 0.5 dex for the clear atmospheres of the hot and warm planets studied. Carbon-to-oxygen ratios can be constrained to better than a factor of 2 in some systems. We expect that these results will provide useful predictions of the scientific value of single-event JWST spectra until its on-orbit performance is known.

473 citations

Journal ArticleDOI
TL;DR: This work addresses air contaminants and their multiphase chemical interactions at the atmosphere−biosphere interface, including human lungs and skin, plant leaves, cryptogamic covers, soil, and aquatic surfaces, and the chemical interactions of reactive oxygen species and reactive nitrogen species, as well as carbonaceous combustion aerosols.
Abstract: This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Review pubs.acs.org/CR Multiphase Chemistry at the Atmosphere−Biosphere Interface Influencing Climate and Public Health in the Anthropocene Ulrich Po schl* and Manabu Shiraiwa* Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany air contaminants (SHCC) and their multiphase chemical interactions at the atmosphere−biosphere interface, including human lungs and skin, plant leaves, cryptogamic covers, soil, and aquatic surfaces. After an overview of different groups of SHCC, we address the chemical interactions of reactive oxygen species and reactive nitrogen species (ROS, RNS), primary biological and secondary organic aerosols (PBA, SOA), as well as carbonaceous combustion aerosols (CCA) including soot, black/elemental carbon, polycyclic aromatic hydrocarbons, and related compounds (PAH, PAC). ROS and RNS interact strongly with other SHCC and are central to both atmospheric and physiological processes and their coupling through the atmosphere−biosphere interface, for example, in the formation and aging of biogenic and combustion aerosols as well as in CONTENTS inflammatory and allergic immune responses triggered by air pollution. Deposition of atmospheric ROS/RNS and aerosols 1. Introduction and Motivation can damage biological tissues, modify surface microbiomes, and 2. Health- and Climate-Relevant Air Contaminants induce oxidative stress through Fenton-like reactions and 2.1. Reactive Oxygen and Nitrogen Species immune responses. The chemical mechanisms and kinetics are 2.2. Primary Biological Aerosols not yet fully elucidated, but the available evidence suggests that 2.3. Secondary Organic Aerosols multiphase processes are crucial for the assessment, prediction, 2.4. Carbonaceous Combustion Aerosols and handling of air quality, climate, and public health. Caution 2.5. Other Air Contaminants Linking Atmospher- should be taken to avoid that human activities shaping the ic and Physiological Chemistry Anthropocene create a hazardous or pathogenic atmosphere 3. Multiphase Chemical Reactions at Specific Bio- overloaded with allergenic, corrosive, toxic, or infectious logical Interfaces contaminants. 3.1. Lung Lining Fluid Multiphase chemistry deals with chemical reactions, trans- 3.2. Human Skin port processes, and transformations between gaseous, liquid, 3.3. Plant Surfaces and Cryptogamic Covers and solid matter. These processes are essential for Earth system 3.4. Soil and Aquatic Surfaces science and climate research as well as for life and health 4. Conclusions and Outlook sciences on molecular and global levels, bridging a wide range Author Information of spatial and temporal scales from below nanometers to Corresponding Authors thousands of kilometers and from less than nanoseconds to Notes years and millennia as illustrated in Figure 1. Biographies From a chemical perspective, life and the metabolism of most Acknowledgments living organisms can be regarded as multiphase processes References involving gases like oxygen and carbon dioxide; liquids like water, blood, lymph, and plant sap; and solid or semisolid substances like bone, tissue, skin, wood, and cellular 1. INTRODUCTION AND MOTIVATION membranes. Even primitive forms of life and metabolic activity Multiphase chemistry plays a vital role in the Earth system, under anaerobic conditions generally involve multiple liquid climate, and health. Chemical reactions, mass transport, and and solid or semisolid phases structured by cells, organelles, and phase transitions between gases, liquids, and solids are essential membranes. 2 On global scales, the biogeochemical cycling of for the interaction and coevolution of life and climate. chemical compounds and elements, which can be regarded as Knowledge of the mechanisms and kinetics of these processes the metabolism of planet Earth, also involves chemical is also required to address societally relevant questions of global reactions, mass transport, and phase transitions within and environmental change and public health in the Anthropocene, that is, in the present era of globally pervasive and steeply Special Issue: 2015 Chemistry in Climate increasing human influence on planet Earth. 1 In this work, we review the current scientific understanding and recent advances Received: September 1, 2014 in the investigation of short-lived health- and climate-relevant Published: April 9, 2015 © 2015 American Chemical Society DOI: 10.1021/cr500487s Chem. Rev. 2015, 115, 4440−4475

449 citations

Journal ArticleDOI
TL;DR: In this paper, the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b was determined based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope.
Abstract: The water abundance in a planetary atmosphere provides a key constraint on the planet’s primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJup short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We nd the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0:4 3:5 solar at 1 condence). The metallicity of WASP-43b’s atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses. Subject headings: planets and satellites: atmospheres | planets and satellites: composition | planets and satellites: individual: WASP-43b

432 citations

Journal ArticleDOI
TL;DR: The ExoMol database as mentioned in this paper provides extensive line lists of molecular transitions which are valid over extended temperature ranges, including lifetimes of individual states, temperature-dependent cooling functions, Lande g-factors, partition functions, cross sections, k-coefficients and transition dipoles with phase relations.

421 citations