scispace - formally typeset
Search or ask a question
Author

Xian-gang Wu

Bio: Xian-gang Wu is an academic researcher from Beijing Institute of Technology. The author has contributed to research in topics: Quantum dot & Perovskite (structure). The author has an hindex of 9, co-authored 13 publications receiving 1898 citations.

Papers
More filters
Journal ArticleDOI
01 Apr 2015-ACS Nano
TL;DR: A ligand-assisted reprecipitation strategy is developed to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies, expected to exhibit interesting nanoscale excitonic properties.
Abstract: Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2–8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well a...

1,756 citations

Journal ArticleDOI
06 Aug 2018-ACS Nano
TL;DR: In this paper, the in situ fabrication of highly luminescent formamidinium lead bromide (FAPbBr3) nanocrystal thin films by dropping toluene as an anti-solvent during the spin-coating with a perovskite precursor solution using 3,3-diphenylpropylamine bromides (DPPA-Br) as a ligand is reported.
Abstract: In this paper, we reported the in situ fabrication of highly luminescent formamidinium lead bromide (FAPbBr3) nanocrystal thin films by dropping toluene as an anti-solvent during the spin-coating with a perovskite precursor solution using 3,3-diphenylpropylamine bromide (DPPA-Br) as a ligand. The resulting films are uniform and composed of 5-20 nm FAPbBr3 perovskite nanocrystals. By monitoring the solvent mixing of anti-solvent and precursor solution on the substrates, we illustrated the difference between the ligand-assisted reprecipitation (LARP) process and the nanocrystal-pinning (NCP) process. This understanding provides a guideline for film optimization, and the optimized films obtained through the in situ LARP process exhibit strong photoluminescence emission at 528 nm, with quantum yields up to 78% and an average photoluminescence lifetime of 12.7 ns. In addition, an exciton binding energy of 57.5 meV was derived from the temperature-dependent photoluminescence measurement. More importantly, we achieved highly efficient pure green perovskite based light-emitting diode (PeLEDs) devices with an average external quantum efficiency (EQE) of 7.3% (maximum EQE is 16.3%) and an average current efficiency (CE) of 29.5 cd A-1 (maximum CE is 66.3 cd A-1) by adapting a conventional device structure of ITO/PEDOT:PSS/TFB/perovskite film/TPBi/LiF/Al. It is expected that the in situ LARP process provides an effective methodology for the improvement of the performance of PeLEDs.

220 citations

Journal ArticleDOI
TL;DR: Room-temperature-operated continuous-wave lasers at room temperature are demonstrated using rationally designed in situ fabricated perovskite quantum dots in polyacrylonitrile films on a distributed feedback cavity and the achieved threshold values are one order lower than the reported values for the conventional CdSe quantum dot-based continuous- waves.
Abstract: Room-temperature-operated continuous-wave lasers have been intensively pursed in the field of on-chip photonics. The realization of a continuous-wave laser strongly relies on the development of gain materials. To date, there is still a huge gap between the current gain materials and commercial requirements. In this work, we demonstrate continuous-wave lasers at room temperature using rationally designed in situ fabricated perovskite quantum dots in polyacrylonitrile films on a distributed feedback cavity. The achieved threshold values are 15, 24, and 58 W/cm2 for green, red, and blue lasers, respectively, which are one order lower than the reported values for the conventional CdSe quantum dot-based continuous-wave laser. Except for the high photoluminescence quantum yields, smooth surface, and high thermal conductivity of the resulting films, the key success of an ultralow laser threshold can be explained by the interaction of polyacrylonitrile and perovskite induced “charge spatial separation” effects. This progress opens up a door to achieve on-chip continuous-wave lasers for photonic applications.

78 citations

Journal ArticleDOI
TL;DR: In this article, the perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction, and the optical measurements illustrate that the stretched composite materials exhibit not only isotropic absorption but also polarized photoluminescence emission.
Abstract: Polarized light is very necessary to achieve functional optical systems for display, imaging, and information storage. Luminescent materials with polarized emission are of great interest to achieve polarized light. Here, strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films is reported by combining an in situ fabrication process with controllable mechanical stretching. The material characterizations show that perovskite quantum dots (QDs) in stretched composite films are oriented aligned into wires along the stretching direction. The optical measurements illustrate that the stretched composite films exhibit not only isotropic absorption but also polarized photoluminescence emission. This feature can be explained with their unique structure of “QD-aligned wires”. The achieved polarization ratio is consistent with the calculated results by considering the dielectric confinement of optical electric field and exciton–exciton interactions. In addition, the optimized stretched composite films show strong photoluminescence emission with a polarization ratio of up to 0.33 and a quantum yield of 80%. The use of these composite films in liquid crystal display backlights has potential to increase the light transmittance of polarizers from 50% (without considering the optical loss) to 65%, which is of great significance to improve the energy efficiency.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The demonstration of these novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.
Abstract: Novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals are reported. The well-dispersed, single-crystal quantum dots (QDs) exhibit high quantum yields, and tunable light emission wavelength. The demonstration of these novel perovskite QDs opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.

2,311 citations

Journal ArticleDOI
07 Oct 2016-Science
TL;DR: N nanoscale phase stabilization of CsPbI3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices and describe the formation of α-CsP bI3 QD films that are phase-stable for months in ambient air.
Abstract: We show nanoscale phase stabilization of CsPbI 3 quantum dots (QDs) to low temperatures that can be used as the active component of efficient optoelectronic devices. CsPbI 3 is an all-inorganic analog to the hybrid organic cation halide perovskites, but the cubic phase of bulk CsPbI 3 (α-CsPbI 3 )—the variant with desirable band gap—is only stable at high temperatures. We describe the formation of α-CsPbI 3 QD films that are phase-stable for months in ambient air. The films exhibit long-range electronic transport and were used to fabricate colloidal perovskite QD photovoltaic cells with an open-circuit voltage of 1.23 volts and efficiency of 10.77%. These devices also function as light-emitting diodes with low turn-on voltage and tunable emission.

2,103 citations

Journal ArticleDOI
TL;DR: In this paper, a room-temperature (RT) synthesis of CsPbX3@X quantum-well band alignment is proposed to guarantee the excitons generation and high-rate radiative recombination at RT.
Abstract: Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), low-threshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the first time, the IPQDs' room-temperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX3@X quantum-well band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.

1,932 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, via controlled anion exchange reactions using a range of different halide precursors, this approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs.
Abstract: We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl– or I– ions and reinsertion of Br– ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

1,658 citations

Journal ArticleDOI
TL;DR: Low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 are reported.
Abstract: Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. Lead halide perovskite colloidal nanocrystals have promising optoelectronic properties, such as high photoluminescence quantum yields and narrow emission linewidths. Here, the authors report low-threshold amplified spontaneous emission and two kinds of lasing in nanostructured caesium lead halide perovskites.

1,305 citations