scispace - formally typeset
Search or ask a question
Author

Xian Li

Bio: Xian Li is an academic researcher from Nantong University. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used a real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) to detect the level of expression of hsa_circ_0007507.
Abstract: Purpose The morbidity and mortality of gastric cancer (GC) remain high worldwide. In recent years, circular RNAs (circRNAs) have attracted widespread attention among cancer researchers due to the stable ring structure. The present work aims to find serum circRNA biomarkers that can be used in clinical applications and effective diagnosis. Methods Hsa_circ_0007507 was extracted through circRNA sequencing. Exonuclease digestion assay, actinomycin D, agarose gel electrophoresis (AGE), and Sanger sequencing verified the potential of hsa_circ_0007507 as a biomarker. Besides, a real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was established to detect the level of expression of hsa_circ_0007507. Twenty cases of GC and the paired adjacent tissues were collected to verify its overexpression. Then, serum samples from 30 cases of colorectal cancer, 30 cases of thyroid cancer, and 30 cases of breast cancer were collected to verify their organ specificity. Additionally, serum samples from 80 healthy people, 62 gastritis patients, 31 intestinal metaplasia patients, and 100 GC patients were collected, and the diagnostic efficacy was evaluated through analysis of the receiver operating characteristic (ROC) curve. Furthermore, 16 post-operative GC samples, samples of 65 relapsed patients and 36 non-relapsed patients were collected to evaluate the prognosis of GC. Results The level of expression of hsa_circ_0007507 in GC tissues was up-regulated (p = 0.0121), which was consistent with the results of circRNA sequencing. Exonuclease digestion assay and actinomycin D confirmed that hsa_circ_0007507 had a stable structure and a longer half-life. In the analysis of organ specificity experiments, serum hsa_circ_0007507 did not have specificity for patients with colorectal cancer (p = 0.5319), thyroid cancer (p = 0.5422), or breast cancer (p = 0.5178). Analysis of diagnostic efficacy indicated that the expression of hsa_circ_0007507 was significantly higher than that of normal people (p <0.0001); the area under the ROC (AUC) was 0.832 (95% CI: 0.771-0.892); the diagnostic power of hsa_circ_0007507 was higher than that of CEA (AUC = 0.765, 95% CI: 0.697-0.833) and CA199 (AUC = 0.587, 95% CI: 0.504-0.67). Through diagnosis using a combination of the three, GC patients could be distinguished from normal people (AUC = 0.849), and higher diagnostic efficiency could be achieved. The expression of serum hsa_circ_0007507 in GC patients significantly decreased after surgery (p = 0.001). Besides, the expression of serum hsa_circ_0007507 in patients with post-operative recurrence was significantly up-regulated again (p = 0.0139). Conclusions Serum hsa_circ_0007507 is differentially expressed in GC patients, post-operative GC patients, gastritis patients, intestinal metaplasia patients and relapsed patients, suggesting that serum hsa_circ_0007507 can be used as a new diagnostic and dynamic monitoring biomarker for GC.

5 citations


Cited by
More filters
DOI
24 Nov 2021
TL;DR: In this article, the authors focus on the importance of circular RNA in cancer and discuss its potential roles as a biomarker or therapeutic target in these diseases, and present a review of the potential role of circular RNAs as biomarkers or therapeutic targets in some diseases.
Abstract: Circular RNA (circRNA) is a distinct class of non-coding RNA produced, in principle, using a back-splicing mechanism, conserved during evolution, with increased stability and a tissue-dependent expression. Circular RNA represents a functional molecule with roles in the regulation of transcription and splicing, microRNA sponge, and the modulation of protein–protein interaction. CircRNAs are involved in essential processes of life such as apoptosis, cell cycle, and proliferation. Due to the regulatory role (upregulation/downregulation) in pathogenic mechanisms of some diseases (including cancer), its potential roles as a biomarker or therapeutic target in these diseases were studied. This review focuses on the importance of circular RNA in cancer.

14 citations

Journal ArticleDOI
TL;DR: The results revealed that the circ_0006089/miR‐361‐3p/TGFB1 axis contributed to GC progression, confirming that circ_ thousand6089 might be a potential therapeutic target for GC.
Abstract: Circular RNA (circRNA) participates in a variety of pathophysiological processes, including the development of gastric cancer (GC). However, the role of circ_0006089 in GC progression and its underlying molecular mechanism need to be further revealed. Quantitative real‐time PCR was utilized for detecting circ_0006089, microRNA (miR)‐361‐3p and transforming growth factor‐β1 (TGFB1) expression. The interaction between miR‐361‐3p and circ_0006089 or TGFB1 was confirmed using a dual‐luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. Cell proliferation, metastasis, apoptosis, and angiogenesis were determined using colony formation assay, EdU assay, transwell assay, flow cytometry, and tube formation assay. Cell glycolysis was evaluated by detecting glucose consumption, lactate production, and ATP levels. In addition, western blot (WB) analysis was used to measure protein expression. Xenograft tumor models were used to assess the effect of circ_0006089 knockdown on GC tumorigenesis. circ_0006089 had been found to be upregulated in GC tissues and cells, and it could act as an miR‐361‐3p sponge. circ_0006089 knockdown suppressed GC proliferation, metastasis, glycolysis, angiogenesis, and increased apoptosis, while this effect could be revoked by miR‐361‐3p inhibitor. TGFB1 was targeted by miR‐361‐3p, and its overexpression reversed the effects of miR‐361‐3p on GC cell function. Also, circ_0006089 promoted TGFB1 expression via sponging miR‐361‐3p. Animal experiments showed that silenced circ_0006089 inhibited GC tumorigenesis through the miR‐361‐3p/TGFB1 pathway. Our results revealed that the circ_0006089/miR‐361‐3p/TGFB1 axis contributed to GC progression, confirming that circ_0006089 might be a potential therapeutic target for GC.

9 citations

Journal ArticleDOI
TL;DR: The mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling are summarized.
Abstract: Circular RNAs (circRNAs) are a new series of noncoding RNAs (ncRNAs) that have been reported to be expressed in eukaryotic cells and have a variety of biological functions in the regulation of cancer pathogenesis and progression. The TME, as a microscopic ecological environment, consists of a variety of cells, including tumor cells, immune cells and other normal cells, ECM and a large number of signaling molecules. The crosstalk between circRNAs and the TME plays a complicated role in affecting the malignant behaviors of digestive system cancers. Herein, we summarize the mechanisms underlying aberrant circRNA expression in the TME of the digestive system cancers, including immune surveillance, angiogenesis, EMT, and ECM remodelling. The regulation of the TME by circRNA is expected to be a new therapeutic method.

3 citations

Journal ArticleDOI
TL;DR: In this paper , differentially expressed circRNAs (DECs) in human BAT, as well as in white adipose tissue (WAT), and identified new biomarkers of BAT.
Abstract: Brown adipose tissue (BAT) can rapidly generate heat and improve energy metabolism. Circular RNAs (circRNAs) are cellular endogenous non-coding RNAs, which can regulate the development and progress of different diseases. However, the role of circRNAs in human BAT is not fully understood. Here, we analyzed the differentially expressed circRNAs (DECs) in human BAT, as well as in white adipose tissue (WAT), and identified new biomarkers of BAT.Three human BAT and three human subcutaneous WAT samples were selected, and circRNA microarray was performed. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to determine the expression of six circRNAs. Finally, the functional analysis was performed by bioinformatics.Compared to WAT, 152 upregulated circRNAs and 201 downregulated circRNAs were identified in BAT. The DECs were further subjected to GO and KEGG enrichment analysis. Several circRNAs, for example, hsa_circ_0006168, hsa_circ_26337 and hsa_circ_0007507 were found upregulated and hsa_circ_0030162 was found downregulated in human BAT compared to WAT.This study profiles the circRNA expression in human BAT and WAT, and suggests hsa_circ_0006168, hsa_circ_26337, hsa_circ_0007507, and hsa_circ_0030162 as novel biomarkers for human BAT.
Journal ArticleDOI
TL;DR: The structural characteristics, formation mechanism and biological function of circRNAs are summarized, and research progress and existing problems in early screening of gastric cancer are elucidated.
Abstract: The incidence and mortality of gastric cancer ranks as a fouth leading cause of cancer death worldwide, especially in East Asia. Due to the lack of specific early-stage symptoms, the majority of patients in most developing nations are diagnosed at an advanced stage. Therefore, it is urgent to find more sensitive and reliable biomarkers for gastric cancer screening and diagnosis. Circular RNAs (circRNAs), a novel type of RNAs with covalently closed loops, are becoming a latest hot spot in the field of. In recent years, a great deal of research has demonstrated that abnormal expression of circRNAs was associated with the development of gastric cancer, and suggested that circRNA might serve as a potential biomarker for gastric cancer diagnosis. In this review, we summarize the structural characteristics, formation mechanism and biological function of circRNAs, and elucidate research progress and existing problems in early screening of gastric cancer.