scispace - formally typeset
Search or ask a question
Author

Xian-Ming Zhang

Bio: Xian-Ming Zhang is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Linear system & Control theory. The author has an hindex of 43, co-authored 127 publications receiving 8620 citations. Previous affiliations of Xian-Ming Zhang include Griffith University & Central South University.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of recent advances in event-triggered consensus of MASs is provided and some in-depth analysis is made on several event- Triggered schemes, including event-based sampling schemes, model-based event-Triggered scheme, sampled-data-basedevent-trIGgered schemes), and self- triggered sampling schemes.
Abstract: Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in event-triggered consensus of MASs. First, a basic framework of multiagent event-triggered operational mechanisms is established. Second, representative results and methodologies reported in the literature are reviewed and some in-depth analysis is made on several event-triggered schemes, including event-based sampling schemes, model-based event-triggered schemes, sampled-data-based event-triggered schemes, and self-triggered sampling schemes. Third, two examples are outlined to show applicability of event-triggered consensus in power sharing of microgrids and formation control of multirobot systems, respectively. Finally, some challenging issues on event-triggered consensus are proposed for future research.

770 citations

Journal ArticleDOI
TL;DR: An overview of recent advances on security control and attack detection of industrial CPSs is presented, and robustness, security and resilience as well as stability are discussed to govern the capability of weakening various attacks.

663 citations

Journal ArticleDOI
TL;DR: This survey provides an overview on the theoretical development of NCSs, and in-depth analysis and discussion is made on sampled-data control, networked control, and event-triggered control.
Abstract: Networked control systems (NCSs) are systems whose control loops are closed through communication networks such that both control signals and feedback signals can be exchanged among system components (sensors, controllers, actuators, and so on). NCSs have a broad range of applications in areas such as industrial control and signal processing. This survey provides an overview on the theoretical development of NCSs. In-depth analysis and discussion is made on sampled-data control, networked control, and event-triggered control. More specifically, existing research methods on NCSs are summarized. Furthermore, as an active research topic, network-based filtering is reviewed briefly. Finally, some challenging problems are presented to direct the future research.

636 citations

Journal ArticleDOI
TL;DR: This paper provides an overview and makes a deep investigation on sampled-data-based event-triggered control and filtering for networked systems, finding that a sampled- Data-based Event-Triggered Scheme can ensure a positive minimum inter-event time and make it possible to jointly design suitable feedback controllers and event- triggered threshold parameters.
Abstract: This paper provides an overview and makes a deep investigation on sampled-data-based event-triggered control and filtering for networked systems. Compared with some existing event-triggered and self-triggered schemes, a sampled-data-based event-triggered scheme can ensure a positive minimum inter-event time and make it possible to jointly design suitable feedback controllers and event-triggered threshold parameters. Thus, more attention has been paid to the sampled-data-based event-triggered scheme. A deep investigation is first made on the sampled-data-based event-triggered scheme. Then, recent results on sampled-data-based event-triggered state feedback control, dynamic output feedback control, $H_\infty$ filtering for networked systems are surveyed and analyzed. An overview on sampled-data-based event-triggered consensus for distributed multiagent systems is given. Finally, some challenging issues are addressed to direct the future research.

572 citations

Journal ArticleDOI
TL;DR: A new integral inequality for quadratic terms is first established and used to obtain a new state- and input-delay-dependent criterion that ensures the stability of the closed-loop system with a memoryless state feedback controller.

525 citations


Cited by
More filters
01 Nov 1981
TL;DR: In this paper, the authors studied the effect of local derivatives on the detection of intensity edges in images, where the local difference of intensities is computed for each pixel in the image.
Abstract: Most of the signal processing that we will study in this course involves local operations on a signal, namely transforming the signal by applying linear combinations of values in the neighborhood of each sample point. You are familiar with such operations from Calculus, namely, taking derivatives and you are also familiar with this from optics namely blurring a signal. We will be looking at sampled signals only. Let's start with a few basic examples. Local difference Suppose we have a 1D image and we take the local difference of intensities, DI(x) = 1 2 (I(x + 1) − I(x − 1)) which give a discrete approximation to a partial derivative. (We compute this for each x in the image.) What is the effect of such a transformation? One key idea is that such a derivative would be useful for marking positions where the intensity changes. Such a change is called an edge. It is important to detect edges in images because they often mark locations at which object properties change. These can include changes in illumination along a surface due to a shadow boundary, or a material (pigment) change, or a change in depth as when one object ends and another begins. The computational problem of finding intensity edges in images is called edge detection. We could look for positions at which DI(x) has a large negative or positive value. Large positive values indicate an edge that goes from low to high intensity, and large negative values indicate an edge that goes from high to low intensity. Example Suppose the image consists of a single (slightly sloped) edge:

1,829 citations

01 Jan 2005
TL;DR: In this paper, a number of quantized feedback design problems for linear systems were studied and the authors showed that the classical sector bound approach is non-conservative for studying these design problems.
Abstract: This paper studies a number of quantized feedback design problems for linear systems. We consider the case where quantizers are static (memoryless). The common aim of these design problems is to stabilize the given system or to achieve certain performance with the coarsest quantization density. Our main discovery is that the classical sector bound approach is nonconservative for studying these design problems. Consequently, we are able to convert many quantized feedback design problems to well-known robust control problems with sector bound uncertainties. In particular, we derive the coarsest quantization densities for stabilization for multiple-input-multiple-output systems in both state feedback and output feedback cases; and we also derive conditions for quantized feedback control for quadratic cost and H/sub /spl infin// performances.

1,292 citations

Journal ArticleDOI
TL;DR: A sampled-data networked control system with simultaneous consideration of network induced delays, data packet dropouts and measurement quantization is modeled as a nonlinear time-delay system with two successive delay components in the state and the problem of network-based H"~ control is solved accordingly.

1,143 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in event-triggered consensus of MASs is provided and some in-depth analysis is made on several event- Triggered schemes, including event-based sampling schemes, model-based event-Triggered scheme, sampled-data-basedevent-trIGgered schemes), and self- triggered sampling schemes.
Abstract: Event-triggered consensus of multiagent systems (MASs) has attracted tremendous attention from both theoretical and practical perspectives due to the fact that it enables all agents eventually to reach an agreement upon a common quantity of interest while significantly alleviating utilization of communication and computation resources. This paper aims to provide an overview of recent advances in event-triggered consensus of MASs. First, a basic framework of multiagent event-triggered operational mechanisms is established. Second, representative results and methodologies reported in the literature are reviewed and some in-depth analysis is made on several event-triggered schemes, including event-based sampling schemes, model-based event-triggered schemes, sampled-data-based event-triggered schemes, and self-triggered sampling schemes. Third, two examples are outlined to show applicability of event-triggered consensus in power sharing of microgrids and formation control of multirobot systems, respectively. Finally, some challenging issues on event-triggered consensus are proposed for future research.

770 citations

Journal ArticleDOI
TL;DR: A novel method is proposed in this note for stability analysis of systems with a time-varying delay by considering the additional useful terms when estimating the upper bound of the derivative of Lyapunov functionals and introducing the new free-weighting matrices.
Abstract: A novel method is proposed in this note for stability analysis of systems with a time-varying delay. Appropriate Lyapunov functional and augmented Lyapunov functional are introduced to establish some improved delay-dependent stability criteria. Less conservative results are obtained by considering the additional useful terms (which are ignored in previous methods) when estimating the upper bound of the derivative of Lyapunov functionals and introducing the new free-weighting matrices. The resulting criteria are extended to the stability analysis for uncertain systems with time-varying structured uncertainties and polytopic-type uncertainties. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method

737 citations