scispace - formally typeset
Search or ask a question
Author

Xian Zhang

Bio: Xian Zhang is an academic researcher from Hefei Institutes of Physical Science. The author has contributed to research in topics: Electrocatalyst & Catalysis. The author has an hindex of 36, co-authored 156 publications receiving 3840 citations. Previous affiliations of Xian Zhang include Chinese Academy of Sciences & Jiangsu University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the synthesis of Co/Co9S8 core-shell structures anchored onto S, N co-doped porous graphene sheets (Co/Co 9S8@SNGS) from thiophene-2,5-dicarboxylate (Tdc) and 4,4ˊ-bipyridine (Bpy) dual organic ligands assembled Co-based metal-organic frameworks (Co-MOFs) in situ grown on graphene oxide sheets by a room-temperature solution reaction.

239 citations

Journal ArticleDOI
TL;DR: Co/CoO nanoparticles immobilized on Co-N-doped carbon nanodots were successfully developed as electrocatalysts exhibiting trifunctional catalytic activities toward oxygen reduction, oxygen evolution and hydrogen evolution reactions and high performance in rechargeable zinc-air batteries.

207 citations

Journal ArticleDOI
01 Sep 2016-Carbon
TL;DR: In this paper, a sandwich-like structured N-doped porous carbon/graphene composites (N-PC@G) derived from sandwichlike structured zeolitic imidazolate framework (ZIF-8@GO).

186 citations

Journal ArticleDOI
TL;DR: Cobalt-doped MoS2 nanosheets were prepared via a facile hydrothermal method, exhibiting bifunctional activities of hydrogen and oxygen evolution reactions in both acidic and alkaline media.

179 citations

Journal ArticleDOI
Fengkui Li1, Wei Zhu1, Xian Zhang1, Chun-tian Zhao1, Mao Xu1 
TL;DR: In this paper, a two-step method by evenly dispersing the cross-linking agent (dicumyl peroxide) into the EVA matrix and then crosslinking at elevated temperatures was described.
Abstract: Crosslinked ethylene–vinyl acetate (EVA) copolymers with VA content of 28% by weight were prepared by a two-step method by evenly dispersing the crosslinking agent (dicumyl peroxide) into the EVA matrix and then crosslinking at elevated temperatures. The crosslinking features of the samples were analyzed by Soxhlet extraction with xylene and dynamic mechanical measurements. All the samples were crystalline at room temperature, and the chemical crosslinks seemed to have little effect on the melting behavior of polyethylene segment crystals in the EVA copolymers. The shape recovery results indicated that only those specimens that had a sufficiently high crosslinking degree (gel content higher than about 30%) were able to show the typical shape memory effect, a large recoverable strain, and a high final recovery rate. The degree of crosslinking can be influenced by the amount of the peroxide and the time and temperature of the reaction. The response temperature of the recovery effect (about 61°C) was related to the melting point of the samples. The EVA shape memory polymer was characterized by its low recovery speed that resulted from the wide melting range of the polyethylene segment crystals. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1063–1070, 1999

172 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

PatentDOI
TL;DR: A very broad, additional spectrum of possible applications for intelligent polymers that covers an area from minimally invasive surgery, through high-performance textiles, up to self-repairing plastic components in every kind of transportation vehicles.
Abstract: Shape memory polymer compositions, articles of manufacture thereof, and methods of preparation and use thereof are described. The shape memory polymer compositions can hold more than one shape in memory. Suitable compositions include at least one hard segment and at least one soft segment. The Ttrans of the hard segment is preferably between -30 and 270 °C. At least one of the hard or soft segments can contain a cross-linkable group, and the segments can be linked by formation of an interpenetrating network or a semi-interpenetrating network, or by physical interactions of the blocks. Objects can be formed into a given shape at a temperature above the Ttrans of the hard segment, and cooled to a temperature below the Ttrans of the soft segment. If the object is subsequently formed into a second shape, the object can return to its original shape by heating the object above the Ttrans of the soft segment and below the Ttrans of the hard segment. The compositions can also include two soft segments which are linked via functional groups which are cleaved in response to application of light, electric field, magnetic field or ultrasound. The cleavage of these groups causes the object to return to its original shape.

2,837 citations

Journal ArticleDOI
TL;DR: It is discussed how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators, and as dictated by macromolecular details.
Abstract: Shape-memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers due to their useful and fascinating functionality. This review thoroughly examines progress in shape-memory polymers, including the very recent past, achieved by numerous groups around the world and our own research group. Considering all of the shape-memory polymers reviewed, we identify a classification scheme wherein nearly all SMPs may be associated with one of four classes in accordance with their shape fixing and recovering mechanisms and as dictated by macromolecular details. We discuss how the described shape-memory polymers show great potential for diverse applications, including in the medical arena, sensors, and actuators.

1,805 citations

Journal ArticleDOI
TL;DR: Shape-memory polymers as discussed by the authors are an emerging class of active polymers that can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus.

1,575 citations

Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations