scispace - formally typeset
Search or ask a question
Author

Xianbin Wang

Bio: Xianbin Wang is an academic researcher from University of Western Ontario. The author has contributed to research in topics: Orthogonal frequency-division multiplexing & Communication channel. The author has an hindex of 48, co-authored 498 publications receiving 11114 citations. Previous affiliations of Xianbin Wang include Université catholique de Louvain & Singapore University of Technology and Design.


Papers
More filters
Journal ArticleDOI
10 May 2016
TL;DR: The security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues, and the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer are discussed.
Abstract: Due to the broadcast nature of radio propagation, the wireless air interface is open and accessible to both authorized and illegitimate users. This completely differs from a wired network, where communicating devices are physically connected through cables and a node without direct association is unable to access the network for illicit activities. The open communications environment makes wireless transmissions more vulnerable than wired communications to malicious attacks, including both the passive eavesdropping for data interception and the active jamming for disrupting legitimate transmissions. Therefore, this paper is motivated to examine the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity, and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state of the art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. Several physical-layer security techniques are reviewed and compared, including information-theoretic security, artificial-noise-aided security, security-oriented beamforming, diversity-assisted security, and physical-layer key generation approaches. Since a jammer emitting radio signals can readily interfere with the legitimate wireless users, we also introduce the family of various jamming attacks and their countermeasures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer, and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.

948 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer.
Abstract: This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.

632 citations

Journal ArticleDOI
TL;DR: The peak-to-average power ratio of an OFDM system and the optimal companding coefficient are determined and the symbol error rate of the systems after the companding is derived.
Abstract: A companding technique is proposed to reduce the peak-to-average-power ratio of the orthogonal frequency division multiplexing (OFDM) signal in this paper. The probability density function of the amplitude of the OFDM signal is determined. Because of the Gaussian distribution of the OFDM signal, the companding technique can be quite effective, since a large OFDM signal only occurs infrequently. The peak-to-average power ratio of an OFDM system and the optimal companding coefficient are determined in this paper. The symbol error rate of the systems after the companding is derived. The performances of the system with and without the companding are also compared.

515 citations

Journal ArticleDOI
TL;DR: Numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.
Abstract: In this paper, we explore the physical-layer security in cooperative wireless networks with multiple relays where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. We propose the AF and DF based optimal relay selection (i.e., AFbORS and DFbORS) schemes to improve the wireless security against eavesdropping attack. For the purpose of comparison, we examine the traditional AFbORS and DFbORS schemes, denoted by T-AFbORS and T-DFbORS, respectively. We also investigate a so-called multiple relay combining (MRC) framework and present the traditional AF and DF based MRC schemes, called T-AFbMRC and T-DFbMRC, where multiple relays participate in forwarding the source signal to destination which then combines its received signals from the multiple relays. We derive closed-form intercept probability expressions of the proposed AFbORS and DFbORS (i.e., P-AFbORS and P-DFbORS) as well as the T-AFbORS, T-DFbORS, T-AFbMRC and T-DFbMRC schemes in the presence of eavesdropping attack. We further conduct an asymptotic intercept probability analysis to evaluate the diversity order performance of relay selection schemes and show that no matter which relaying protocol is considered (i.e., AF and DF), the traditional and proposed optimal relay selection approaches both achieve the diversity order M where M represents the number of relays. In addition, numerical results show that for both AF and DF protocols, the intercept probability performance of proposed optimal relay selection is strictly better than that of the traditional relay selection and multiple relay combining methods.

510 citations

Journal ArticleDOI
TL;DR: A cooperative Nash bargaining resource allocation algorithm is developed, and is shown to converge to a Pareto-optimal equilibrium for the cooperative game and the existence, uniqueness, and fairness of the solution to this game model are proved.
Abstract: Cognitive small cell networks have been envisioned as a promising technique for meeting the exponentially increasing mobile traffic demand. Recently, many technological issues pertaining to cognitive small cell networks have been studied, including resource allocation and interference mitigation, but most studies assume non-cooperative schemes or perfect channel state information (CSI). Different from the existing works, we investigate the joint uplink subchannel and power allocation problem in cognitive small cells using cooperative Nash bargaining game theory, where the cross-tier interference mitigation, minimum outage probability requirement, imperfect CSI and fairness in terms of minimum rate requirement are considered. A unified analytical framework is proposed for the optimization problem, where the near optimal cooperative bargaining resource allocation strategy is derived based on Lagrangian dual decomposition by introducing time-sharing variables and recalling the Lambert-W function. The existence, uniqueness, and fairness of the solution to this game model are proved. A cooperative Nash bargaining resource allocation algorithm is developed, and is shown to converge to a Pareto-optimal equilibrium for the cooperative game. Simulation results are provided to verify the effectiveness of the proposed cooperative game algorithm for efficient and fair resource allocation in cognitive small cell networks.

339 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations