scispace - formally typeset
Search or ask a question
Author

Xiang Gao

Bio: Xiang Gao is an academic researcher from Anhui Medical University. The author has contributed to research in topics: Hepatocellular carcinoma & Metastasis. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review focused on liver fibrosis, HCC cell proliferation, metastasis, tumor angiogenesis, and corresponding protective measures was presented, where renin-angiotensin system (RAS) was taken as the main lines to introduce the mechanism of RAS in the occurrence and development of HCC.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients.
Abstract: Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported.Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC.Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells.In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.

23 citations

Journal ArticleDOI
TL;DR: Findings provide a novel therapeutic regimen to prevent and treat many chronic diseases by accelerating the effect of the ACE2/Ang1-7/Mas axis and inhibiting the ACE/AngII/AT1R axis.
Abstract: The impaired hepatic lipids and carbohydrates metabolism result in various metabolic disorders, including obesity, diabetes, insulin resistance, hyperlipidemia and metabolic syndrome. The renin–angiotensin system (RAS) has been identified in the liver and it is now recognized as an important modulator of body metabolic processes. This review is intended to provide an update of the impact of the renin–angiotensin system on lipid and carbohydrate metabolism, regarding gender difference and prenatal undernutrition, specifically focused on the role of the liver. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. RAS is over activated in non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma. Glucagon-like peptide-1 (GLP-1) has been shown to modulate RAS. The GLP-I analogue liraglutide antagonizes hepatocellular steatosis and exhibits liver protection. Liraglutide has a negative effect on the ACE/AngII/AT1R axis and a positive impact on the ACE2/Ang(1-7)/Mas axis. Activation of the ACE2/Ang(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. Angiotensin(1-7) and ACE2 shows more favorable effects on lipid homeostasis in males but there is a need to do more investigation in female models. Prenatal undernutrition exerts long-term effects in the liver of offspring and is associated with a number of metabolic and endocrine alterations. These findings provide a novel therapeutic regimen to prevent and treat many chronic diseases by accelerating the effect of the ACE2/Ang1-7/Mas axis and inhibiting the ACE/AngII/AT1R axis.

6 citations

Journal ArticleDOI
TL;DR: In this paper , a synthetic pyrazolo[3,4-b]pyridine compound, WRH-2412, was reported to exhibit in vitro antitumor activity.
Abstract: Abstract Hepatocellular carcinoma is considered one of the most lethal cancers, which is characterised by increasing prevalence associated with high level of invasion and metastasis. The novel synthetic pyrazolo[3,4-b]pyridine compound, WRH-2412, was reported to exhibit in vitro antitumor activity. This study was conducted to evaluate the antitumor activity of WRH-2412 in HCC induced in rats through affecting the TGF-β/β-catenin/α-SMA pathway. Antitumor activity of WRH-2412 was evaluated by calculating the rat’s survival rate and by assessment of serum α-fetoprotein. Protein expression of TGF-β, β-catenin, E-cadherin, fascin and gene expression of SMAD4 and α-SMA were determined in hepatic tissue of rats. WRH-2412 produced antitumor activity by significantly increasing the rats’ survival rate and decreasing serum α-fetoprotein. WRH-2412 significantly reduced an HCC-induced increase in hepatic TGF-β, β-catenin, SMAD4, fascin and α-SMA expression. In addition, WRH-2412 significantly increased hepatic E-cadherin expression.

1 citations

Journal ArticleDOI
TL;DR: In this article, the roles of AT1R, PLC-β1, CaM and other related signal molecules in the formation and development of hepatocellular carcinoma (HCC) and their correlation was determined.
Abstract: OBJECTIVE To study the roles of AT1R, PLC-β1, CaM and other related signal molecules in the formation and development of hepatocellular carcinoma (HCC) and their correlation. METHODS ELISA and immunohistochemistry were used to analyze the expressions of target proteins in serum and liver tissue of HCC patients, and the correlation between AT1R, PLC-β1 and CaM and postoperative survival status of patients was followed up and determined. CCK-8 method was used to screen the doses of Ang II and candesartan sensitive to HepG2 and HCCLM3 cells. Transwell experiment was used to observe the effects of different drugs on the migration and invasion activity of HCC cells. Meanwhile, flow cytometry and Western blot were used to detect the expression levels of AT1R, PLC-β1 and CaM in the cells. Then PLC-β1 siRNA was selected to transfect HCC cells, so as to further clarify the mechanism of the above signal proteins. HepG2 cells were inoculated under the hepatic capsule of mice to induce the formation of HCC in situ. Ang II and candesartan were used to stimulate HCC mice to observe the difference in liver appearance and measure the liver index. Finally, ELISA and immunofluorescence experiments were selected to analyze the levels of target proteins in mouse serum and liver tissue. RESULTS The expression levels of target proteins in serum and liver tissue of HCC patients were significantly increased, and the postoperative survival time of patients with high expression of AT1R, PLC-β1 or CaM was obviously shortened. Ang II and candesartan could significantly promote and inhibit the motility of HCC cells, and had different effects on the levels of AT1R, PLC-β1 and CaM in cells. However, in hepatocellular carcinoma cells transfected with PLC-β1 siRNA, the intervention ability of drugs was obviously weakened. Ang II could significantly promote the formation and progression of mouse HCC, while candesartan had the opposite effect. Meanwhile, medications could affect the expressions of target proteins in mouse serum and liver tissue. CONCLUSION AT1R, PLC-β1 and CaM may be risk factors affecting the formation and prognosis of HCC, and the PLC-β1/CaM signaling pathway mediated by AT1R is an important way to regulate the migration and invasion activity of HCC cells.

1 citations

Journal ArticleDOI
TL;DR: In this article , a comprehensive analysis of PTMs within HCV non-structural proteins (NS3/4A, NS5A and NS5B) through bioinformatics analysis to examine post-translational crosstalk between phosphorylation, palmitoylation, methylation, acetylation and ubiquitination sites in selected viral proteins.
Abstract: Abstract Many PTMs dysregulation is known to be the major cause of many cancers including HCV induced HCC. PTMs of hepatitis C virus (HCV) regions NS3/4A, NS5A and NS5B are crucial for proper protein functions and replication that directly affect the generation of infectious virus particles and completion of its life cycle. In this study, we have performed comprehensive analysis of PTMs within HCV non-structural proteins (NS3/4A, NS5A and NS5B) through bioinformatics analysis to examine post-translational crosstalk between phosphorylation, palmitoylation, methylation, acetylation and ubiquitination sites in selected viral proteins. Our analysis has revealed many highly putative PTMs sites that are also conserved among major genotypes conferring the importance of these sites. We have also analysed viral 3D structures in their modified and unmodified forms to address extent and signatures of structural changes upon PTM. This study provides evidence that PTMs induce significant conformational changes and make viral proteins more stable. To find the potential role of PTMs in HCV induced HCC, docking analysis between selected viral proteins and p38-MAPK has been performed which also confirms their strong association with HCV induced HCC. The major findings proposed that PTMs at specific sites of HCV viral proteins could dysregulate specific pathways that cause the development of HCC.

1 citations