scispace - formally typeset
Search or ask a question
Author

Xiang Zhang

Bio: Xiang Zhang is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 154, co-authored 1733 publications receiving 117576 citations. Previous affiliations of Xiang Zhang include University of California, Berkeley & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the subwavelength imaging quality of a metamaterial superlens is studied numerically in the wave vector domain and examples of image compression and magnification are given and resolution limits are discussed.
Abstract: The subwavelength imaging quality of a metamaterial superlens is studied numerically in the wave vector domain. Examples of image compression and magnification are given and resolution limits are discussed. A minimal resolution of λ/6 is obtained using a 36 nm silver film at 364 nm wavelength. Simulation also reveals that the power flux is no longer a good measure to determine the focal plane of superlens due to the elevated field strength at exit side of the metamaterial slab.

304 citations

Journal ArticleDOI
27 Jan 2017-Science
TL;DR: An order-of-magnitude breakdown of the Wiedemann-Franz law is reported at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition.
Abstract: In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of nonparaxial Mathieu and Weber accelerating beams was introduced, and it was shown that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities.
Abstract: We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating beams, generalizing the concept of previously found accelerating beams. We show that such beams bend into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the paraxial limit. Not only do generalized nonparaxial accelerating beams open up many possibilities of beam engineering for applications, but the fundamental concept developed here can be applied to other linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.

300 citations

Journal ArticleDOI
01 May 2017
TL;DR: Using parity-time symmetry, the authors in this article realized lasing and anti-lasing at the same equency in a single cavity, and demonstrated that the two resonances share common resonant features such as identical frequency dependence, coherent in-phase response and line spectral resolution.
Abstract: Using Parity-time symmetry, we experimentally realize lasing and anti-lasing at the same equency in a single cavity. Because of the time-reversal property, the demonstrated lasing and anti-lasing resonances share common resonant features such as identical frequency dependence, coherent in-phase response and line spectral resolution. Lasing and anti-lasing in a single device offers a new route for light modulation with high contrast approaching the ultimate limit.

298 citations

Journal ArticleDOI
01 Jul 2018
TL;DR: In this article, a series of nanowires was fabricated in which layer-by-layer self-organization of insulating organic cations and conductive inorganic frameworks, along the nanowire length, creates high resistance in the interior of the crystals and high conductivity at the edges of the crystal.
Abstract: Metal-halide perovskites have long carrier diffusion lengths, low trap densities and high carrier mobilities, and are therefore of value in the development of photovoltaics and light-emitting diodes. However, the presence of thermally activated carriers in the materials leads to high noise levels, which limits their photodetection capabilities. Here, we show that ultrasensitive photodetectors can be created from single-crystalline nanowire arrays of layered metal-halide perovskites. A series of nanowires was fabricated in which layer-by-layer self-organization of insulating organic cations and conductive inorganic frameworks, along the nanowire length, creates high resistance in the interior of the crystals and high conductivity at the edges of the crystals. Using these structures, high-performance photodetection was achieved with responsivities exceeding 1.5 × 104 A W−1 and detectivities exceeding 7 × 1015 jones. Our state-of-the-art device performance originates from a combination of efficient free-carrier edge conduction and resistive hopping barriers in the layered perovskites. Photodetectors made from single-crystalline nanowire arrays of layered metal-halide perovskites exhibit detectivities of more than 7 × 1015 jones, due to a nanowire structure that combines high resistance in the interior of the crystals and high conductivity at the edges of the crystals.

297 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations