scispace - formally typeset
Search or ask a question
Author

Xiang Zhang

Bio: Xiang Zhang is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 154, co-authored 1733 publications receiving 117576 citations. Previous affiliations of Xiang Zhang include University of California, Berkeley & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Finite-difference time-domain simulations in conjunction with a developed analytical theory show that efficient energy transfer with signal attenuation of less then 0.57 dB/microm and group velocity higher than 1/4c can be achieved.
Abstract: A one-dimensional magnetic plasmon propagating in a linear chain of single split ring resonators is proposed. The subwavelength size resonators interact mainly through exchange of conduction current, resulting in stronger coupling as compared to the corresponding magneto-inductive interaction. Finite-difference time-domain simulations in conjunction with a developed analytical theory show that efficient energy transfer with signal attenuation of less then 0.57 dB/microm and group velocity higher than 1/4c can be achieved. The proposed novel mechanism of energy transport in the nanoscale has potential applications in subwavelength transmission lines for a wide range of integrated optical devices.

161 citations

Journal ArticleDOI
01 Feb 2015
TL;DR: This work systematically study the existing goodness metrics and provides theoretical explanations on why they may cause the free rider effect, and develops a query biased node weighting scheme to reduce the free riders effect.
Abstract: Given a large network, local community detection aims at finding the community that contains a set of query nodes and also maximizes (minimizes) a goodness metric. This problem has recently drawn intense research interest. Various goodness metrics have been proposed. However, most existing metrics tend to include irrelevant subgraphs in the detected local community. We refer to such irrelevant subgraphs as free riders. We systematically study the existing goodness metrics and provide theoretical explanations on why they may cause the free rider effect. We further develop a query biased node weighting scheme to reduce the free rider effect. In particular, each node is weighted by its proximity to the query node. We define a query biased density metric to integrate the edge and node weights. The query biased densest subgraph, which has the largest query biased density, will shift to the neighborhood of the query nodes after node weighting. We then formulate the query biased densest connected subgraph (QDC) problem, study its complexity, and provide efficient algorithms to solve it. We perform extensive experiments on a variety of real and synthetic networks to evaluate the effectiveness and efficiency of the proposed methods.

160 citations

Journal ArticleDOI
01 Mar 2015-Leukemia
TL;DR: CD5+ Breg cells may have an important role in the process of MSC-induced amelioration of refractory cGVHD and may provide new clues to reveal novel mechanisms of action for MSCs.
Abstract: Refractory chronic graft-versus-host disease (cGVHD) is a significant complication resulting from allogeneic hematopoietic stem cell transplantation (HSCT). Mesenchymal stromal cells (MSCs) have shown promise for treating refractory cGVHD, but the favorable effects of MSCs therapy in cGVHD are complex and not fully understood. In this prospective clinical study, 20 of 23 cGVHD patients had a complete response or partial response in a 12-month follow-up study. The most marked improvements in cGVHD symptoms were observed in the skin, oral mucosa and liver. Clinical improvement was accompanied by a significantly increased number of interleukin (IL)-10-producing CD5+ B cells. Importantly, CD5+ B cells from cGVHD patients showed increased IL-10 expression after MSCs treatment, which was associated with reduced inflammatory cytokine production by T cells. Mechanistically, MSCs could promote the survival and proliferation of CD5+ regulatory B cells (Bregs), and indoleamine 2, 3-dioxygenase partially participates in the MSC-mediated effects on Breg cells. Thus, CD5+ Breg cells may have an important role in the process of MSC-induced amelioration of refractory cGVHD and may provide new clues to reveal novel mechanisms of action for MSCs.

159 citations

Journal ArticleDOI
Jaroslav Adam1, Dagmar Adamová2, Madan M. Aggarwal3, G. Aglieri Rinella4  +1020 moreInstitutions (95)
TL;DR: In this article, the authors reported the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of √sNN=5.02
Abstract: We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of √sNN=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η|<0.8 and for the transverse momentum range 0.2

159 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations