scispace - formally typeset
Search or ask a question
Author

Xiangcheng Ma

Bio: Xiangcheng Ma is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 27, co-authored 49 publications receiving 2535 citations. Previous affiliations of Xiangcheng Ma include University of Science and Technology of China & Chinese Academy of Sciences.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations as mentioned in this paper, which has been used to explore new physics (e.g. magnetic fields).
Abstract: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations. Previous FIRE simulations used an identical source code (“FIRE-1”) for consistency. Motivated by the development of more accurate numerics – including hydrodynamic solvers, gravitational softening, and supernova coupling algorithms – and exploration of new physics (e.g. magnetic fields), we introduce “FIRE-2”, an updated numerical implementation of FIRE physics for the GIZMO code. We run a suite of simulations and compare against FIRE-1: overall, FIRE-2 improvements do not qualitatively change galaxy-scale properties. We pursue an extensive study of numerics versus physics. Details of the star-formation algorithm, cooling physics, and chemistry have weak effects, provided that we include metal-line cooling and star formation occurs at higher-than-mean densities. We present new resolution criteria for high-resolution galaxy simulations. Most galaxy-scale properties are robust to numerics we test, provided: (1) Toomre masses are resolved; (2) feedback coupling ensures conservation, and (3) individual supernovae are time-resolved. Stellar masses and profiles are most robust to resolution, followed by metal abundances and morphologies, followed by properties of winds and circum-galactic media (CGM). Central (∼kpc) mass concentrations in massive (>L*) galaxies are sensitive to numerics (via trapping/recycling of winds in hot halos). Multiple feedback mechanisms play key roles: supernovae regulate stellar masses/winds; stellar mass-loss fuels late star formation; radiative feedback suppresses accretion onto dwarfs and instantaneous star formation in disks. We provide all initial conditions and numerical algorithms used.

740 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6.
Abstract: We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass–metallicity relations (MZR) from z=0–6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses M_(halo) = 10^9–10^(13) M_☉ and stellar masses M_* = 10^4–10^(11) M_☉ at z = 0 and have been shown to produce many observed galaxy properties from z = 0–6. For the first time, our simulations agree reasonably well with the observed mass–metallicity relations at z = 0–3 for a broad range of galaxy masses. We predict the evolution of the MZR from z = 0–6, as log(Z_(gas)/Z_☉) = 12+log(O/H)-9.0 = 0.35 [log(M_*/M_☉) - 10] + 0.93exp(-0.43z) - 1.05 and log(Z_*/Z_☉) = [Fe=H] + 0.2 = 0.40 [log(M_*/M_☉)-10]+0.67exp(-0.50z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above M_* = 10^6 M_☉ are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between “sub-grid” wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.

353 citations

Journal ArticleDOI
Abstract: We present a series of high-resolution (20–2000 M⊙, 0.1–4 pc) cosmological zoom-in simulations at z ≳ 6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9–10^(11) M⊙ and rest-frame ultraviolet magnitude M_(UV) = −9 to −19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0–6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (f_(esc)) of hydrogen ionizing photons. We find that the instantaneous f_(esc) has large time variability (0.01–20 per cent), while the time-averaged f_(esc) over long time-scales generally remains ≲ 5 per cent, considerably lower than the estimate in many reionization models. We find no strong dependence of f_(esc) on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mostly come from populations between 3 and 10 Myr, whose birth clouds have been largely cleared by stellar feedback. However, these populations only contribute a small fraction of intrinsic ionizing photon budgets according to standard stellar population models. We show that f_(esc) can be boosted to high values, if stellar populations older than 3 Myr produce more ionizing photons than standard stellar population models (as motivated by, e.g. models including binaries). By contrast, runaway stars with velocities suggested by observations can enhance f_(esc) by only a small fraction. We show that ‘sub-grid’ star formation models, which do not explicitly resolve star formation in dense clouds with n ≫ 1 cm^(−3), will dramatically overpredict f_(esc).

162 citations

Journal ArticleDOI
TL;DR: In this article, a binary population and spectral synthesis model is proposed to explain the ionization of the universe, and the time-averaged effective escape fraction (ratio of escaped ionizing photons to observed 1500 A photons) increases by factors ∼4-10, sufficient to explain reionization.
Abstract: Empirical constraints on reionization require galactic ionizing photon escape fractions f_(esc) ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ∼1–5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged ‘effective’ escape fraction (ratio of escaped ionizing photons to observed 1500 A photons) increases by factors ∼4–10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project.
Abstract: We study the structure, age and metallicity gradients, and dynamical evolution using a cosmological zoom-in simulation of a Milky Way-mass galaxy from the Feedback in Realistic Environments project. In the simulation, stars older than 6 Gyr were formed in a chaotic, bursty mode and have the largest vertical scaleheights (1.5–2.5 kpc) by z = 0, while stars younger than 6 Gyr were formed in a relatively calm, stable disc. The vertical scaleheight increases with stellar age at all radii, because (1) stars that formed earlier were thicker ‘at birth’, and (2) stars were kinematically heated to an even thicker distribution after formation. Stars of the same age are thicker in the outer disc than in the inner disc (flaring). These lead to positive vertical age gradients and negative radial age gradients. The radial metallicity gradient is negative at the mid-plane, flattens at larger disc height |Z|, and turns positive above |Z| ∼ 1.5 kpc. The vertical metallicity gradient is negative at all radii, but is steeper at smaller radii. These trends broadly agree with observations in the Milky Way and can be naturally understood from the age gradients. The vertical stellar density profile can be well described by two components, with scaleheights 200–500 pc and 1–1.5 kpc, respectively. The thick component is a mix of stars older than 4 Gyr, which formed through a combination of several mechanisms. Our results also demonstrate that it is possible to form a thin disc in cosmological simulations even with a strong stellar feedback.

141 citations


Cited by
More filters
01 Jan 1985
TL;DR: In this article, a reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster.
Abstract: A reexamination is conducted of the formation of dwarf, diffuse, metal-poor galaxies due to supernova-driven winds, in view of data on the systematic properties of dwarfs in the Local Group and Virgo Cluster. The critical condition for global gas loss as a result of the first burst of star formation is that the virial velocity lie below an approximately 100 km/sec critical value. This leads, as observed, to two distinct classes of galaxies, encompassing the diffuse dwarfs, which primarily originate from typical density perturbations, and the normal, brighter galaxies, including compact dwarfs, which can originate only from the highest density peaks. This furnishes a statistical biasing mechanism for the preferential formation of bright galaxies in denser regions, enhancing high surface brightness galaxies' clustering relative to the diffusive dwarfs.

1,253 citations

Journal ArticleDOI
TL;DR: For example, the observed cores of many dark-matter dominated galaxies are both less dense and less cuspy than naively predicted in the Lambda$CDM as discussed by the authors, and the number of small galaxies and dwarf satellites in the Local Group is far below the predicted count of low-mass dark matter halos and subhalos within similar volumes.
Abstract: The dark energy plus cold dark matter ($\Lambda$CDM) cosmological model has been a demonstrably successful framework for predicting and explaining the large-scale structure of Universe and its evolution with time. Yet on length scales smaller than $\sim 1$ Mpc and mass scales smaller than $\sim 10^{11} M_{\odot}$, the theory faces a number of challenges. For example, the observed cores of many dark-matter dominated galaxies are both less dense and less cuspy than naively predicted in $\Lambda$CDM. The number of small galaxies and dwarf satellites in the Local Group is also far below the predicted count of low-mass dark matter halos and subhalos within similar volumes. These issues underlie the most well-documented problems with $\Lambda$CDM: Cusp/Core, Missing Satellites, and Too-Big-to-Fail. The key question is whether a better understanding of baryon physics, dark matter physics, or both will be required to meet these challenges. Other anomalies, including the observed planar and orbital configurations of Local Group satellites and the tight baryonic/dark matter scaling relations obeyed by the galaxy population, have been less thoroughly explored in the context of $\Lambda$CDM theory. Future surveys to discover faint, distant dwarf galaxies and to precisely measure their masses and density structure hold promising avenues for testing possible solutions to the small-scale challenges going forward. Observational programs to constrain or discover and characterize the number of truly dark low-mass halos are among the most important, and achievable, goals in this field over then next decade. These efforts will either further verify the $\Lambda$CDM paradigm or demand a substantial revision in our understanding of the nature of dark matter.

991 citations

Journal ArticleDOI
TL;DR: The IllustrisTNG project as discussed by the authors is a suite of cosmological magneto-hydrodynamical simulations of galaxy formation performed with the Arepo code and updated models for feedback physics.
Abstract: The IllustrisTNG project is a new suite of cosmological magneto-hydrodynamical simulations of galaxy formation performed with the Arepo code and updated models for feedback physics. Here we introduce the first two simulations of the series, TNG100 and TNG300, and quantify the stellar mass content of about 4000 massive galaxy groups and clusters ($10^{13} \leq M_{\rm 200c}/M_{\rm sun} \leq 10^{15}$) at recent times ($z \leq 1$). The richest clusters have half of their total stellar mass bound to satellite galaxies, with the other half being associated with the central galaxy and the diffuse intra-cluster light. The exact ICL fraction depends sensitively on the definition of a central galaxy's mass and varies in our most massive clusters between 20 to 40% of the total stellar mass. Haloes of $5\times 10^{14}M_{\rm sun}$ and above have more diffuse stellar mass outside 100 kpc than within 100 kpc, with power-law slopes of the radial mass density distribution as shallow as the dark matter's ( $-3.5 < \alpha_{\rm 3D} < -3$). Total halo mass is a very good predictor of stellar mass, and vice versa: at $z=0$, the 3D stellar mass measured within 30 kpc scales as $\propto (M_{\rm 500c})^{0.49}$ with a $\sim 0.12$ dex scatter. This is possibly too steep in comparison to the available observational constraints, even though the abundance of TNG less massive galaxies ($< 10^{11}M_{\rm sun}$ in stars) is in good agreement with the measured galaxy stellar mass functions at recent epochs. The 3D sizes of massive galaxies fall too on a tight ($\sim$0.16 dex scatter) power-law relation with halo mass, with $r^{\rm stars}_{\rm 0.5} \propto (M_{\rm 500c})^{0.53}$. Even more fundamentally, halo mass alone is a good predictor for the whole stellar mass profiles beyond the inner few kpc, and we show how on average these can be precisely recovered given a single mass measurement of the galaxy or its halo.

956 citations

Journal ArticleDOI
TL;DR: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations as mentioned in this paper, which has been used to explore new physics (e.g. magnetic fields).
Abstract: The Feedback In Realistic Environments (FIRE) project explores feedback in cosmological galaxy formation simulations. Previous FIRE simulations used an identical source code (“FIRE-1”) for consistency. Motivated by the development of more accurate numerics – including hydrodynamic solvers, gravitational softening, and supernova coupling algorithms – and exploration of new physics (e.g. magnetic fields), we introduce “FIRE-2”, an updated numerical implementation of FIRE physics for the GIZMO code. We run a suite of simulations and compare against FIRE-1: overall, FIRE-2 improvements do not qualitatively change galaxy-scale properties. We pursue an extensive study of numerics versus physics. Details of the star-formation algorithm, cooling physics, and chemistry have weak effects, provided that we include metal-line cooling and star formation occurs at higher-than-mean densities. We present new resolution criteria for high-resolution galaxy simulations. Most galaxy-scale properties are robust to numerics we test, provided: (1) Toomre masses are resolved; (2) feedback coupling ensures conservation, and (3) individual supernovae are time-resolved. Stellar masses and profiles are most robust to resolution, followed by metal abundances and morphologies, followed by properties of winds and circum-galactic media (CGM). Central (∼kpc) mass concentrations in massive (>L*) galaxies are sensitive to numerics (via trapping/recycling of winds in hot halos). Multiple feedback mechanisms play key roles: supernovae regulate stellar masses/winds; stellar mass-loss fuels late star formation; radiative feedback suppresses accretion onto dwarfs and instantaneous star formation in disks. We provide all initial conditions and numerical algorithms used.

740 citations

Journal ArticleDOI
TL;DR: The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby as discussed by the authors.
Abstract: The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

648 citations