scispace - formally typeset
Search or ask a question
Author

Xiangfei Chen

Bio: Xiangfei Chen is an academic researcher from Nanjing University. The author has contributed to research in topics: Fiber Bragg grating & Laser. The author has an hindex of 27, co-authored 338 publications receiving 3359 citations. Previous affiliations of Xiangfei Chen include College of Engineering, Trivandrum & University of Ottawa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a dual-wavelength fiber Bragg grating (FBG) with two ultranarrow transmission bands in combination with a regular FBG is used to ensure single-longitudinal mode operation of the fiber ring laser.
Abstract: A novel approach for the generation of high-frequency microwave signals using a dual-wavelength single-longitudinal-mode fiber ring laser is proposed and demonstrated. In the proposed configuration, a dual-wavelength fiber Bragg grating (FBG) with two ultranarrow transmission bands in combination with a regular FBG is used to ensure single-longitudinal-mode operation of the fiber ring laser. A semiconductor optical amplifier is employed as the gain medium in the ring cavity. Since the two lasing wavelengths share the same gain cavity, the relative phase fluctuations between the two wavelengths are low and can be used to generate a low-phase-noise microwave signal without need of a microwave reference source. Three dual-wavelength ultranarrow transmission-band FBGs with wavelength spacing of 0.148, 0.33, and 0.053 nm are respectively incorporated into the laser. Microwave signals at 18.68, 40.95, and 6.95 GHz are obtained by beating the dual wavelengths at a photodetector. The spectral width of the generated microwave signals as small as 80 kHz with a frequency stability better than 1 MHz in the free-running mode at room temperature is obtained.

208 citations

Journal ArticleDOI
TL;DR: In this article, a single longitudinal mode (SLM) dual-wavelength erbium-doped fiber (EDF) laser based on a simple linear cavity is proposed and demonstrated.
Abstract: A single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber (EDF) laser based on a simple linear cavity is proposed and demonstrated. The SLM operation is achieved by incorporating a dual-phase-shift fiber grating with two ultranarrow transmission bands. Due to the gain grating produced by spatial hole-burning in the EDF, the proposed linear cavity supports dual-wavelength oscillation at room temperature with a wavelength interval of 27 pm. The laser output is heterodyned on a photodetector and the generated microwave signal has a linewidth <20 kHz without any feedback.

163 citations

Journal ArticleDOI
TL;DR: Dual-wavelength single-longitudinal-mode lasing with a wavelength spacing as small as 0.147 nm at room temperature is experimentally demonstrated.
Abstract: A fiber Bragg grating filter with ultranarrow dual-transmission bands implemented using the equivalent phase shift technique is demonstrated. A fiber ring laser that incorporates a dual-transmission-band fiber Bragg grating filter in the ring cavity is implemented. Dual-wavelength single-longitudinal-mode lasing with a wavelength spacing as small as 0.147?nm at room temperature is experimentally demonstrated.

114 citations

Journal ArticleDOI
TL;DR: In this article, a single-longitudinal-mode (SLM) fiber ring laser that incorporates an equivalent phase-shifted fiber Bragg grating acting as an ultra-narrow bandpass filter in the laser cavity is proposed.
Abstract: A novel single-longitudinal-mode (SLM) fiber ring laser that incorporates an equivalent phase-shifted fiber Bragg grating acting as an ultra-narrow bandpass filter in the laser cavity is proposed. The equivalent phase-shifted fiber Bragg grating has an ultra-narrow transmission bandwidth which ensures an SLM lasing. Stable SLM operation without mode hopping is demonstrated.

105 citations

Journal ArticleDOI
TL;DR: This paper reports the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration.
Abstract: In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology.

95 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art in ferroelectric thin films is presented in this paper, where the authors review applications: micro-systems' applications, applications in high frequency electronics, and memories based on Ferroelectric materials.
Abstract: An overview of the state of art in ferroelectric thin films is presented. First, we review applications: microsystems' applications, applications in high frequency electronics, and memories based on ferroelectric materials. The second section deals with materials, structure (domains, in particular), and size effects. Properties of thin films that are important for applications are then addressed: polarization reversal and properties related to the reliability of ferroelectric memories, piezoelectric nonlinearity of ferroelectric films which is relevant to microsystems' applications, and permittivity and loss in ferroelectric films-important in all applications and essential in high frequency devices. In the context of properties we also discuss nanoscale probing of ferroelectrics. Finally, we comment on two important emerging topics: multiferroic materials and ferroelectric one-dimensional nanostructures. (c) 2006 American Institute of Physics.

1,632 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations

Journal Article
TL;DR: In this paper, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion.
Abstract: Broadband and low loss capability of photonics has led to an ever-increasing interest in its use for the generation, processing, control and distribution of microwave and millimeter-wave signals for applications such as broadband wireless access networks, sensor networks, radar, satellite communitarians, instrumentation and warfare systems. In this tutorial, techniques developed in the last few years in microwave photonics are reviewed with an emphasis on the systems architectures for photonic generation and processing of microwave signals, photonic true-time delay beamforming, radio-over-fiber systems, and photonic analog-to-digital conversion. Challenges in system implementation for practical applications and new areas of research in microwave photonics are also discussed.

1,332 citations