scispace - formally typeset
Search or ask a question
Author

Xiangpei Zeng

Other affiliations: University of North Texas
Bio: Xiangpei Zeng is an academic researcher from University of North Texas Health Science Center. The author has contributed to research in topics: Massive parallel sequencing & Illumina dye sequencing. The author has an hindex of 11, co-authored 15 publications receiving 444 citations. Previous affiliations of Xiangpei Zeng include University of North Texas.

Papers
More filters
Journal ArticleDOI
TL;DR: An overall increase in haplotype or genetic diversity and random match probability, as well as better haplogroup assignment demonstrates that MPS of the mtGenome using the Illumina MiSeq system is a viable and reliable methodology.
Abstract: Mitochondrial DNA typing in forensic genetics has been performed traditionally using Sanger-type sequencing. Consequently sequencing of a relatively-large target such as the mitochondrial genome (mtGenome) is laborious and time consuming. Thus, sequencing typically focuses on the control region due to its high concentration of variation. Massively parallel sequencing (MPS) has become more accessible in recent years allowing for high-throughput processing of large target areas. In this study, Nextera(®) XT DNA Sample Preparation Kit and the Illumina MiSeq™ were utilized to generate quality whole genome mitochondrial haplotypes from 283 individuals in a both cost-effective and rapid manner. Results showed that haplotypes can be generated at a high depth of coverage with limited strand bias. The distribution of variants across the mitochondrial genome was described and demonstrated greater variation within the coding region than the non-coding region. Haplotype and haplogroup diversity were described with respect to whole mtGenome and HVI/HVII. An overall increase in haplotype or genetic diversity and random match probability, as well as better haplogroup assignment demonstrates that MPS of the mtGenome using the Illumina MiSeq system is a viable and reliable methodology.

150 citations

Journal ArticleDOI
TL;DR: These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.
Abstract: STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). However, CE-based method has some limitations: a small number of STR loci can be used; stutter products, dye artifacts and low level alleles. Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS. In this study, a prototype multiplex STR System (Promega) was amplified and prepared using the TruSeq DNA LT Sample Preparation Kit (Illumina) in 24 samples. Results showed that the MinElute PCR Purification Kit (Qiagen) was a better size selection method compared with recommended diluted bead mixtures. The library input sensitivity study showed that a wide range of amplicon product (6-200ng) could be used for library preparation without apparent differences in the STR profile. PCR sensitivity study indicated that 62pg may be minimum input amount for generating complete profiles. Reliability study results on 24 different individuals showed that high depth of coverage (DoC) and balanced heterozygote allele coverage ratios (ACRs) could be obtained with 250pg of input DNA, and 62pg could generate complete or nearly complete profiles. These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.

68 citations

Journal ArticleDOI
TL;DR: The results of this study supported that whole mtGenome sequence data with high accuracy can be obtained using the PGM platform and multiplexing of samples was demonstrated which can improve throughput and reduce cost per sample analyzed.
Abstract: Massively parallel sequencing (MPS) technologies have the capacity to sequence targeted regions or whole genomes of multiple nucleic acid samples with high coverage by sequencing millions of DNA fragments simultaneously Compared with Sanger sequencing, MPS also can reduce labor and cost on a per nucleotide basis and indeed on a per sample basis In this study, whole genomes of human mitochondria (mtGenome) were sequenced on the Personal Genome Machine (PGMTM) (Life Technologies, San Francisco, CA), the out data were assessed, and the results were compared with data previously generated on the MiSeqTM (Illumina, San Diego, CA) The objectives of this paper were to determine the feasibility, accuracy, and reliability of sequence data obtained from the PGM 24 samples were multiplexed (in groups of six) and sequenced on the at least 10 megabase throughput 314 chip The depth of coverage pattern was similar among all 24 samples; however the coverage across the genome varied For strand bias, the average ratio of coverage between the forward and reverse strands at each nucleotide position indicated that two-thirds of the positions of the genome had ratios that were greater than 05 A few sites had more extreme strand bias Another observation was that 156 positions had a false deletion rate greater than 015 in one or more individuals There were 31-98 (SNP) mtGenome variants observed per sample for the 24 samples analyzed The total 1237 (SNP) variants were concordant between the results from the PGM and MiSeq The quality scores for haplogroup assignment for all 24 samples ranged between 888%-100% In this study, mtDNA sequence data generated from the PGM were analyzed and the output evaluated Depth of coverage variation and strand bias were identified but generally were infrequent and did not impact reliability of variant calls Multiplexing of samples was demonstrated which can improve throughput and reduce cost per sample analyzed Overall, the results of this study, based on orthogonal concordance testing and phylogenetic scrutiny, supported that whole mtGenome sequence data with high accuracy can be obtained using the PGM platform

59 citations

Journal ArticleDOI
TL;DR: These studies indicate that the PowerSeq Auto System and the Illumina MiSeq can generate concordant results with current CE-based methods and MPS-based systems can facilitate mixture deconvolution with the detection of intra-repeat variations within length-based STR alleles.
Abstract: Capillary electrophoresis (CE) and multiplex amplification with fluorescent tagging have been routinely used for STR typing in forensic genetics. However, CE-based methods restrict the number of markers that can be multiplexed simultaneously and cannot detect any intra-repeat variations within STRs. Several studies already have indicated that massively parallel sequencing (MPS) may be another potential technology for STR typing. In this study, the prototype PowerSeq(™) Auto System (Promega) containing the 23 STR loci and amelogenin was evaluated using Illumina MiSeq. Results showed that single source complete profiles could be obtained using as little as 62 pg of input DNA. The reproducibility study showed that the profiles generated were consistent among multiple typing experiments for a given individual. The mixture study indicated that partial STR profiles of the minor contributor could be detected up to 19:1 mixture. The mock forensic casework study showed that full or partial profiles could be obtained from different types of single source and mixture samples. These studies indicate that the PowerSeq Auto System and the Illumina MiSeq can generate concordant results with current CE-based methods. In addition, MPS-based systems can facilitate mixture deconvolution with the detection of intra-repeat variations within length-based STR alleles.

51 citations

Journal ArticleDOI
TL;DR: The use of single nucleotide polymorphisms in forensic genetics has been limited to challenged samples with low template and/or degraded DNA, but the recent introduction of massively parallel sequencing technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci.
Abstract: The use of single nucleotide polymorphisms (SNPs) in forensic genetics has been limited to challenged samples with low template and/or degraded DNA. The recent introduction of massively parallel sequencing (MPS) technologies has expanded the potential applications of these markers and increased the discrimination power of well-established loci by considering variation in the flanking regions of target loci. The ForenSeq Signature Preparation Kit contains 165 SNP amplicons for ancestry- (aiSNPs), identity- (iiSNPs), and phenotype-inference (piSNPs). In this study, 714 individuals from four major populations (African American, AFA; East Asian, ASN; US Caucasian, CAU; and Southwest US Hispanic, HIS) previously reported by Churchill et al. [Forensic Sci Int Genet. 30 (2017) 81–92; DOI: https://doi.org/10.1016/j.fsigen.2017.06.004 ] were assessed using STRait Razor v2s to determine the level of diversity in the flanking regions of these amplicons. The results show that nearly 70% of loci showed some level of flanking region variation with 22 iiSNPs and 8 aiSNPs categorized as microhaplotypes in this study. The heterozygosities of these microhaplotypes approached, and in one instance surpassed, those of some core STR loci. Also, the impact of the flanking region on other forensic parameters (e.g., power of exclusion and power of discrimination) was examined. Sixteen of the 94 iiSNPs had an effective allele number greater than 2.00 across the four populations. To assess what effect the flanking region information had on the ancestry inference, genotype probabilities and likelihood ratios were determined. Additionally, concordance with the ForenSeq UAS and Nextera Rapid Capture was evaluated, and patterns of heterozygote imbalance were identified. Pairwise comparison of the iiSNP diplotypes determined the probability of detecting a mixture (i.e., observing ≥ 3 haplotypes) using these loci alone was 0.9952. The improvement in random match probabilities for the full regions over the target iiSNPs was found to be significant. When combining the iiSNPs with the autosomal STRs, the combined match probabilities ranged from 6.40 × 10−73 (ASN) to 1.02 × 10-79 (AFA).

36 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal Article
TL;DR: In this age of modern era, the use of internet must be maximized, as one of the benefits is to get the on-line analysis of human genetic linkage book, as the world window, as many people suggest.
Abstract: In this age of modern era, the use of internet must be maximized. Yeah, internet will help us very much not only for important thing but also for daily activities. Many people now, from any level can use internet. The sources of internet connection can also be enjoyed in many places. As one of the benefits is to get the on-line analysis of human genetic linkage book, as the world window, as many people suggest.

1,000 citations

Journal ArticleDOI
TL;DR: This set of experiments indicates the beta version of the ForenSeq DNA Signature Prep Kit is a valid tool for forensic DNA typing and warrants full validation studies of this MPS technology.
Abstract: While capillary electrophoresis-based technologies have been the mainstay for human identity typing applications, there are limitations with this methodology's resolution, scalability, and throughput. Massively parallel sequencing (MPS) offers the capability to multiplex multiple types of forensically-relevant markers and multiple samples together in one run all at an overall lower cost per nucleotide than traditional capillary electrophoresis-based methods; thus, addressing some of these limitations. MPS also is poised to expand forensic typing capabilities by providing new strategies for mixture deconvolution with the identification of intra-STR allele sequence variants and the potential to generate new types of investigative leads with an increase in the overall number and types of genetic markers being analyzed. The beta version of the Illumina ForenSeq DNA Signature Prep Kit is a MPS library preparation method with a streamlined workflow that allows for targeted amplification and sequencing of 63 STRs and 95 identity SNPs, with the option to include an additional 56 ancestry SNPs and 22 phenotypic SNPs depending on the primer mix chosen for amplification, on the MiSeq desktop sequencer (Illumina). This study was divided into a series of experiments that evaluated reliability, sensitivity of detection, mixture analysis, concordance, and the ability to analyze challenged samples. Genotype accuracy, depth of coverage, and allele balance were used as informative metrics for the quality of the data produced. The ForenSeq DNA Signature Prep Kit produced reliable, reproducible results and obtained full profiles with DNA input amounts of 1ng. Data were found to be concordant with current capillary electrophoresis methods, and mixtures at a 1:19 ratio were resolved accurately. Data from the challenged samples showed concordant results with current DNA typing methods with markers in common and minimal allele drop out from the large number of markers typed on these samples. This set of experiments indicates the beta version of the ForenSeq DNA Signature Prep Kit is a valid tool for forensic DNA typing and warrants full validation studies of this MPS technology.

187 citations