scispace - formally typeset
Search or ask a question
Author

Xiangsheng Gao

Other affiliations: Beihang University
Bio: Xiangsheng Gao is an academic researcher from Beijing University of Technology. The author has contributed to research in topics: Ball screw & Ball (mathematics). The author has an hindex of 7, co-authored 28 publications receiving 149 citations. Previous affiliations of Xiangsheng Gao include Beihang University.

Papers
More filters
Journal ArticleDOI
Tao Zan1, Zhihao Liu1, Hui Wang1, Min Wang1, Xiangsheng Gao1 
TL;DR: A CCPR method based on a one-dimensional convolutional neural network (1D-CNN) based on the influence of the network structural parameters and activation functions on the recognition performance is analyzed and discussed, and some suggestions for parameter selection are given.
Abstract: Unnatural control chart patterns (CCPs) usually correspond to the specific factors in a manufacturing process, so the control charts have become important means of the statistical process control. Therefore, an accurate and automatic control chart pattern recognition (CCPR) is of great significance for manufacturing enterprises. In order to improve the CCPR accuracy, experts have designed various complex features, which undoubtedly increases the workload and difficulty of the quality control. To solve these problems, a CCPR method based on a one-dimensional convolutional neural network (1D-CNN) is proposed. The proposed method does not require to extract complex features manually; instead, it uses a 1D-CNN to obtain the optimal feature set from the raw data of the CCPs through the feature learning and completes the CCPR. The dataset for training and validation, containing six typical CCPs, is generated by the Monte-Carlo simulation. Then, the influence of the network structural parameters and activation functions on the recognition performance is analyzed and discussed, and some suggestions for parameter selection are given. Finally, the performance of the proposed method is compared with that of the traditional multi-layer perceptron method using the same dataset. The comparison results show that the proposed 1D-CNN method has obvious advantages in the CCPR tasks. Compared with the related literature, the features extracted by the 1D-CNN are of higher quality. Furthermore, the 1D-CNN trained with simulation dataset still perform well in recognizing the real dataset from the production environment.

52 citations

Journal ArticleDOI
TL;DR: In this article, the influence of configuration parameters on dynamic characteristics of machine tools in the working space has been suggested based on the orthogonal experiment method, where the configuration parameters are considered as four factors for dynamic characteristics.

37 citations

Journal ArticleDOI
TL;DR: An intelligent SPC method based on feature learning using multilayer bidirectional long short-term memory network (Bi-LSTM) to learn the best features from the raw data, which has obvious advantages over other methods in recognition accuracy, despite the HPR or CCPR.
Abstract: Statistical process control (SPC) is an important tool of enterprise quality management. It can scientifically distinguish the abnormal fluctuations of product quality. Therefore, intelligent and efficient SPC is of great significance to the manufacturing industry, especially in the context of industry 4.0. The intelligence of SPC is embodied in the realization of histogram pattern recognition (HPR) and control chart pattern recognition (CCPR). In view of the lack of HPR research and the complexity and low efficiency of the manual feature of control chart pattern, an intelligent SPC method based on feature learning is proposed. This method uses multilayer bidirectional long short-term memory network (Bi-LSTM) to learn the best features from the raw data, and it is universal to HPR and CCPR. Firstly, the training and test data sets are generated by Monte Carlo simulation algorithm. There are seven histogram patterns (HPs) and nine control chart patterns (CCPs). Then, the network structure parameters and training parameters are optimized to obtain the best training effect. Finally, the proposed method is compared with traditional methods and other deep learning methods. The results show that the quality of extracted features by multilayer Bi-LSTM is the highest. It has obvious advantages over other methods in recognition accuracy, despite the HPR or CCPR. In addition, the abnormal patterns of data in actual production can be effectively identified.

29 citations

Journal ArticleDOI
TL;DR: The proposed fault diagnosis model of rolling bearing based on a multi-dimension input convolutional neural network (MDI-CNN) improves the recognition rate, robustness and convergence performance of the traditional convolution model and has good generalization ability.
Abstract: Aiming at the problem of poor robustness of the intelligent diagnostic model, a fault diagnosis model of rolling bearing based on a multi-dimension input convolutional neural network (MDI-CNN) is proposed. Compared with the traditional convolution neural network, the proposed model has multiple input layers. Therefore, it can fuse the original signal and processed signal—making full use of advantages of the convolutional neural networks to learn the original signal characteristics automatically, and also improving recognition accuracy and anti-jamming ability. The feasibility and validity of the proposed MDI-CNN are verified, and its advantages are proved by comparison with the other related models. Moreover, the robustness of the model is tested by adding the noise to the test set. Finally, the stability of the model is verified by two experiments. The experimental results show that the proposed model improves the recognition rate, robustness and convergence performance of the traditional convolution model and has good generalization ability.

26 citations

Journal ArticleDOI
TL;DR: Based on the excellent mechanical properties and remarkable surface lubrication mechanism of natural articular cartilages, one kind of cartilage-like composite material with a lubrication phase (Composite-LP) was developed by chemically grafting a thick hydrophilic polyelectrolyte brush layer onto the subsurface of a three-dimensional manufactured elastomer scaffold-hydrogel composite architecture as discussed by the authors .
Abstract: Natural articular cartilages show extraordinary tribological performance based on their penetrated surface lubricated biomacromolecules and good mechanical tolerance. Hydrogels are considered to be potential alternatives to cartilages due to their low surface friction and good biocompatibility, although the poor mechanical properties limited their applications. Inspired by the excellent mechanical properties and the remarkable surface lubrication mechanism of natural articular cartilages, one kind of cartilage-like composite material with a lubrication phase (Composite-LP) was developed by chemically grafting a thick hydrophilic polyelectrolyte brush layer onto the subsurface of a three-dimensional manufactured elastomer scaffold-hydrogel composite architecture. The Composite-LP exhibited good load-bearing capacities because of the nondissipation strategy and the stress dispersion mechanism resulting from the elastomer scaffold enhancement. In the presence of the top lubrication layer, the Composite-LP showed superior friction reduction functionality and wear resistance under a dynamic shearing process. This design concept of coupling the non-dissipative mechanism and interface lubrication provides a new avenue for developing cartilage-like hydrogels and soft robots.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is a need for state-of-the-art in neural networks application to PR to urgently address the above-highlights problems and the research focus on current models and the development of new models concurrently for more successes in the field.
Abstract: The era of artificial neural network (ANN) began with a simplified application in many fields and remarkable success in pattern recognition (PR) even in manufacturing industries. Although significant progress achieved and surveyed in addressing ANN application to PR challenges, nevertheless, some problems are yet to be resolved like whimsical orientation (the unknown path that cannot be accurately calculated due to its directional position). Other problem includes; object classification, location, scaling, neurons behavior analysis in hidden layers, rule, and template matching. Also, the lack of extant literature on the issues associated with ANN application to PR seems to slow down research focus and progress in the field. Hence, there is a need for state-of-the-art in neural networks application to PR to urgently address the above-highlights problems for more successes. The study furnishes readers with a clearer understanding of the current, and new trend in ANN models that effectively addresses PR challenges to enable research focus and topics. Similarly, the comprehensive review reveals the diverse areas of the success of ANN models and their application to PR. In evaluating the performance of ANN models, some statistical indicators for measuring the performance of the ANN model in many studies were adopted. Such as the use of mean absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error (RMSE), and variance of absolute percentage error (VAPE). The result shows that the current ANN models such as GAN, SAE, DBN, RBM, RNN, RBFN, PNN, CNN, SLP, MLP, MLNN, Reservoir computing, and Transformer models are performing excellently in their application to PR tasks. Therefore, the study recommends the research focus on current models and the development of new models concurrently for more successes in the field.

217 citations

Journal ArticleDOI
TL;DR: In this article, a systematic review of current Industrial Artificial Intelligence literature is presented, focusing on its application in real manufacturing environments to identify the main enabling technologies and core design principles, along with a set of key challenges and opportunities to be addressed by future research efforts.
Abstract: The advent of the Industry 4.0 initiative has made it so that manufacturing environments are becoming more and more dynamic, connected but also inherently more complex, with additional inter-dependencies, uncertainties and large volumes of data being generated. Recent advances in Industrial Artificial Intelligence have showcased the potential of this technology to assist manufacturers in tackling the challenges associated with this digital transformation of Cyber-Physical Systems, through its data-driven predictive analytics and capacity to assist decision-making in highly complex, non-linear and often multistage environments. However, the industrial adoption of such solutions is still relatively low beyond the experimental pilot stage, as real environments provide unique and difficult challenges for which organizations are still unprepared. The aim of this paper is thus two-fold. First, a systematic review of current Industrial Artificial Intelligence literature is presented, focusing on its application in real manufacturing environments to identify the main enabling technologies and core design principles. Then, a set of key challenges and opportunities to be addressed by future research efforts are formulated along with a conceptual framework to bridge the gap between research in this field and the manufacturing industry, with the goal of promoting industrial adoption through a successful transition towards a digitized and data-driven company-wide culture. This paper is among the first to provide a clear definition and holistic view of Industrial Artificial Intelligence in the Industry 4.0 landscape, identifying and analysing its fundamental building blocks and ongoing trends. Its findings are expected to assist and empower researchers and manufacturers alike to better understand the requirements and steps necessary for a successful transition into Industry 4.0 supported by AI, as well as the challenges that may arise during this process.

139 citations

Journal ArticleDOI
TL;DR: This paper deals with industrial applications of ML techniques, intending to clarify the real potentialities, as well as potential flaws, of ML algorithms applied to operation management, and a comprehensive review is presented and organized in a way that should facilitate the orientation of practitioners in this field.
Abstract: Machine Learning (ML) is a branch of artificial intelligence that studies algorithms able to learn autonomously, directly from the input data. Over the last decade, ML techniques have made a huge leap forward, as demonstrated by Deep Learning (DL) algorithms implemented by autonomous driving cars, or by electronic strategy games. Hence, researchers have started to consider ML also for applications within the industrial field, and many works indicate ML as one the main enablers to evolve a traditional manufacturing system up to the Industry 4.0 level. Nonetheless, industrial applications are still few and limited to a small cluster of international companies. This paper deals with these topics, intending to clarify the real potentialities, as well as potential flaws, of ML algorithms applied to operation management. A comprehensive review is presented and organized in a way that should facilitate the orientation of practitioners in this field. To this aim, papers from 2000 to date are categorized in terms of the applied algorithm and application domain, and a keyword analysis is also performed, to details the most promising topics in the field. What emerges is a consistent upward trend in the number of publications, with a spike of interest for unsupervised and especially deep learning techniques, which recorded a very high number of publications in the last five years. Concerning trends, along with consolidated research areas, recent topics that are growing in popularity were also discovered. Among these, the main ones are production planning and control and defect analysis, thus suggesting that in the years to come ML will become pervasive in many fields of operation management.

136 citations

12 Sep 2014

117 citations

Journal ArticleDOI
TL;DR: In this paper, the operation parameters of PEMFC were optimized by the orthogonal experiment method, which met the requirements of the fuel cell parameter optimization test under steady working condition.

82 citations