scispace - formally typeset
Search or ask a question
Author

Xianjun Du

Bio: Xianjun Du is an academic researcher from Shanghai University. The author has contributed to research in topics: Carbon dioxide reforming & Catalysis. The author has an hindex of 6, co-authored 7 publications receiving 922 citations.

Papers
More filters
Journal ArticleDOI
Xianjun Du1, Dengsong Zhang1, Liyi Shi1, Ruihua Gao1, Jianping Zhang1 
TL;DR: In this paper, the comparative catalytic activity and coke resistance of Ni/CeO2 nanorods (NR) and nanopolyhedra (NP) were examined in carbon dioxide reforming of methane over Ni/NiO2-NR catalysts and showed that the predominantly exposed planes are the unusually reactive {110 and {100} planes on the CeO2−NR rather than the stable {111} one on the NiO2•NP.
Abstract: The comparative catalytic activity and coke resistance are examined in carbon dioxide reforming of methane over Ni/CeO2 nanorods (NR) and nanopolyhedra (NP). The Ni/CeO2–NR catalysts display more excellent catalytic activity and higher coke resistance compared with the Ni/CeO2–NP. The high resolution transmission electron microscope reveals that the predominantly exposed planes are the unusually reactive {110} and {100} planes on the CeO2–NR rather than the stable {111} one on the CeO2–NP. The prepared samples were also characterized by X-ray diffraction, transmission electron microscopy, hydrogen temperature-programmed reduction, X-ray photoelectron spectroscopy, UV and visible Raman spectra, and oxygen temperature-programmed oxidation. The {110} and {100} planes show great superiority for the anchoring of Ni nanoparticles, which results in the existence of strong metal–support interaction effect (SMSI). The SMSI effect can be helpful to prevent sintering of Ni particles, which benefits to reduce the dea...

440 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that focus on the shape-controlled synthesis methods of ceria nanostructures and their catalytic applications and a personal perspective on the probable challenges and developments of the controllable synthesis of CeO(2) nanomaterials.
Abstract: Because of their excellent properties and extensive applications, ceria nanomaterials have attracted much attention in recent years. This perspective provides a comprehensive review of current research activities that focus on the shape-controlled synthesis methods of ceria nanostructures. We elaborate on the synthesis strategies in the following four sections: (i) oriented growth directed by the crystallographic structure of cerium-based materials; (ii) oriented growth directed by the use of an appropriate capping reagent; (iii) growth confined or dictated by various templates; (iv) other potential methods for generating CeO(2) nanomaterials. In this perspective, we also discuss the catalytic applications of ceria nanostructures. They are often used as active components or supports in many catalytic reactions and their catalytic activities show morphology dependence. We review the morphology dependence of their catalytic performances in carbon monoxide oxidation, water-gas shift, nitric oxide reduction, and reforming reactions. At the end of this review, we give a personal perspective on the probable challenges and developments of the controllable synthesis of CeO(2) nanomaterials and their catalytic applications.

343 citations

Journal ArticleDOI
Xianjun Du1, Dengsong Zhang1, Ruihua Gao1, Lei Huang1, Liyi Shi1, Jianping Zhang1 
TL;DR: The modular catalysts were fabricated via the combination of the Ni-MgO-Al2O3 mixed oxide nanoplates and the mesoporous SiO2 coating and show high catalytic activity with enhanced coke- and sintering-resistance in the dry reforming of methane reaction.

109 citations

Journal ArticleDOI
Xianjun Du1, Dengsong Zhang1, Liyi Shi1, Ruihua Gao1, Jianping Zhang1 
TL;DR: Monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires display high resistance to coke formation and sintering in the dry reforming of methane due to their hierarchical porous structure, well dispersed metallic nickel species, more basic sites and strong metal-support interaction effect.
Abstract: Monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires display high resistance to coke formation and sintering in the dry reforming of methane due to their hierarchical porous structure, well dispersed metallic nickel species, more basic sites and strong metal–support interaction effect.

100 citations

Journal ArticleDOI
Dengsong Zhang1, Fuhuan Niu1, Tingting Yan1, Liyi Shi1, Xianjun Du1, Jianhui Fang1 
TL;DR: In this paper, a template-free solvothermal treatment was used to synthesize ceria nanospindles with a mixture of glycerin and water as the reaction solvent.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review has a wide view on all those aspects related to ceria which promise to produce an important impact on the authors' life, encompassing fundamental knowledge of CeO2 and its properties, characterization toolbox, emerging features, theoretical studies, and all the catalytic applications, organized by their degree of establishment on the market.
Abstract: Cerium dioxide (CeO2, ceria) is becoming an ubiquitous constituent in catalytic systems for a variety of applications. 2016 sees the 40th anniversary since ceria was first employed by Ford Motor Company as an oxygen storage component in car converters, to become in the years since its inception an irreplaceable component in three-way catalysts (TWCs). Apart from this well-established use, ceria is looming as a catalyst component for a wide range of catalytic applications. For some of these, such as fuel cells, CeO2-based materials have almost reached the market stage, while for some other catalytic reactions, such as reforming processes, photocatalysis, water-gas shift reaction, thermochemical water splitting, and organic reactions, ceria is emerging as a unique material, holding great promise for future market breakthroughs. While much knowledge about the fundamental characteristics of CeO2-based materials has already been acquired, new characterization techniques and powerful theoretical methods are dee...

1,710 citations

Journal ArticleDOI
TL;DR: In this article, the shape and size of catalyst particles and the interface between different components of heterogeneous catalysts at the nanometer level can radically alter their performances, particularly for CeO2-based catalysts, where the precise control of surface atomic arrangements can modify the reactivity of Ce4+/Ce3+ ions, changing the oxygen release/uptake characteristics of ceria.
Abstract: Engineering the shape and size of catalyst particles and the interface between different components of heterogeneous catalysts at the nanometer level can radically alter their performances. This is particularly true with CeO2-based catalysts, where the precise control of surface atomic arrangements can modify the reactivity of Ce4+/Ce3+ ions, changing the oxygen release/uptake characteristics of ceria, which, in turn, strongly affects catalytic performance in several reactions like CO, soot, and VOC oxidation, WGS, hydrogenation, acid–base reactions, and so on. Despite the fact that many of these catalysts are polycrystalline with rather ill-defined morphologies, experimental and theoretical studies on well-defined nanocrystals have clearly established that the exposure of specific facets can increase/decrease surface oxygen reactivity and metal–support interaction (for supported metal nanoparticles), consequently affecting catalytic reactions. Here, we want to address the most recent developments in this...

497 citations

Journal ArticleDOI
TL;DR: This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years.
Abstract: Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber–Bosch process of ammonia synthesis and later in the Fischer–Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their “greenness”. This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

432 citations

Journal ArticleDOI
Lei Zhang1, Liyi Shi1, Lei Huang1, Jianping Zhang1, Ruihua Gao1, Dengsong Zhang1 
TL;DR: In this paper, a deNOx catalyst based on hollow porous MnxCo3-xO4 nanocages with a spinel structure thermally derived from nanocube-like metal-organic frameworks (Mn3[Co(CN)6]2·nH2O), which are synthesized via a self-assemble method, is presented.
Abstract: Herein, we have rationally designed and originally developed a high-performance deNOx catalyst based on hollow porous MnxCo3–xO4 nanocages with a spinel structure thermally derived from nanocube-like metal–organic frameworks (Mn3[Co(CN)6]2·nH2O), which are synthesized via a self-assemble method. The as-prepared catalysts have been characterized systematically to elucidate their morphological structure and surface properties. As compared with conventional MnxCo3–xO4 nanoparticles, MnxCo3–xO4 nanocages possess a much better catalytic activity at low-temperature regions, higher N2 selectivity, more extensive operating-temperature window, higher stability, and SO2 tolerance. The feature of hollow and porous structures provides a larger surface area and more active sites to adsorb and activate reaction gases, resulting in the high catalytic activity. Moreover, the uniform distribution and strong interaction of manganese and cobalt oxide species not only enhance the catalytic cycle but also inhibit the formatio...

422 citations

Journal ArticleDOI
TL;DR: The correlation between the catalytic properties and the exposed facets verifies the chemical nature of the morphology effect and provides an overview of the interactions between the rod-shaped oxides and the metal nanoparticles in metal-oxide catalyst systems, involving crystal-facet-selective deposition of metal particles onto different crystal facets in the oxide supports.
Abstract: Nanocatalysts are characterised by the unique nanoscale properties that originate from their highly reduced dimensions. Extensive studies over the past few decades have demonstrated that the size and shape of a catalyst particle on the nanometre scale profoundly affect its reaction performance. In particular, controlling the catalyst particle morphology allows a selective exposure of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms or domains substantially improves catalytic activity, selectivity, and stability. This phenomenon is called morphology-dependent nanocatalysts: catalyst particles with anisotropic morphologies on the nanometre scale greatly affect the reaction performance by selectively exposing the desired facets. In this review, we highlight important progress in morphology-dependent nanocatalysts based on the use of rod-shaped metal oxides with characteristic redox and acid-base features. The correlation between the catalytic properties and the exposed facets verifies the chemical nature of the morphology effect. Moreover, we provide an overview of the interactions between the rod-shaped oxides and the metal nanoparticles in metal-oxide catalyst systems, involving crystal-facet-selective deposition of metal particles onto different crystal facets in the oxide supports. A fundamental understanding of active sites in morphologically tuneable oxides enclosed by the desired reactive facets is expected to direct the development of highly efficient nanocatalysts.

414 citations