scispace - formally typeset
Search or ask a question
Author

Xiao-Ai Zhang

Bio: Xiao-Ai Zhang is an academic researcher. The author has contributed to research in topics: Severe fever with thrombocytopenia syndrome & Viral load. The author has an hindex of 1, co-authored 3 publications receiving 21 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Findings provide insights into the clinical features and molecular underpinnings of severe SFTS, which may aid in patient care and therapeutic design, and may also be conserved during infection by other highly pathogenic viruses.

68 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the antibody-dependent cellular cytotoxicity (ADCC) activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease.
Abstract: Antibody-dependent cellular cytotoxicity (ADCC) responses to viral infection are a form of antibody regulated immune responses mediated through the Fc fragment. Whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered ADCC responses contributes to COVID-19 disease development is currently not well understood. To understand the potential correlation between ADCC responses and COVID-19 disease development, we analyzed the ADCC activity and neutralizing antibody response in 255 individuals ranging from asymptomatic to fatal infections over 1 year post disease. ADCC was elicited by 10 days post-infection, peaked by 11-20 days, and remained detectable until 400 days post-infection. In general, patients with severe disease had higher ADCC activities. Notably, patients who had severe disease and recovered had higher ADCC activities than patients who had severe disease and deceased. Importantly, ADCC activities were mediated by a diversity of epitopes in SARS-COV-2-infected mice and induced to comparable levels against SARS-CoV-2 variants of concern (VOCs) (B.1.1.7, B.1.351, and P.1) as that against the D614G mutant in human patients and vaccinated mice. Our study indicates anti-SARS-CoV-2 ADCC as a major trait of COVID-19 patients with various conditions, which can be applied to estimate the extra-neutralization level against COVID-19, especially lethal COVID-19.

37 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper conducted a single-blind, randomized controlled trial to assess the efficacy and safety of T-705 in treating severe fever with thrombocytopenia syndrome (SFTS) virus.
Abstract: Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging tick-borne virus with high fatality and an expanding endemic. Currently, effective anti-SFTSV intervention remains unavailable. Favipiravir (T-705) was recently reported to show in vitro and in animal model antiviral efficacy against SFTSV. Here, we conducted a single-blind, randomized controlled trial to assess the efficacy and safety of T-705 in treating SFTS (Chinese Clinical Trial Registry website, number ChiCTR1900023350). From May to August 2018, laboratory-confirmed SFTS patients were recruited from a designated hospital and randomly assigned to receive oral T-705 in combination with supportive care or supportive care only. Fatal outcome occurred in 9.5% (7/74) of T-705 treated patients and 18.3% (13/71) of controls (odds ratio, 0.466, 95% CI, 0.174-1.247). Cox regression showed a significant reduction in case fatality rate (CFR) with an adjusted hazard ratio of 0.366 (95% CI, 0.142-0.944). Among the low-viral load subgroup (RT-PCR cycle threshold ≥26), T-705 treatment significantly reduced CFR from 11.5 to 1.6% (P = 0.029), while no between-arm difference was observed in the high-viral load subgroup (RT-PCR cycle threshold <26). The T-705-treated group showed shorter viral clearance, lower incidence of hemorrhagic signs, and faster recovery of laboratory abnormities compared with the controls. The in vitro and animal experiments demonstrated that the antiviral efficacies of T-705 were proportionally induced by SFTSV mutation rates, particularly from two transition mutation types. The mutation analyses on T-705-treated serum samples disclosed a partially consistent mutagenesis pattern as those of the in vitro or animal experiments in reducing the SFTSV viral loads, further supporting the anti-SFTSV effect of T-705, especially for the low-viral loads.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is reported that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells, which may lead to the lung damage in the COVID-19 patients.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to respiratory illness and multi-organ failure in critically ill patients. Although the virus-induced lung damage and inflammatory cytokine storm are believed to be directly associated with coronavirus disease 2019 (COVID-19) clinical manifestations, the underlying mechanisms of virus-triggered inflammatory responses are currently unknown. Here we report that SARS-CoV-2 infection activates caspase-8 to trigger cell apoptosis and inflammatory cytokine processing in the lung epithelial cells. The processed inflammatory cytokines are released through the virus-induced necroptosis pathway. Virus-induced apoptosis, necroptosis, and inflammation activation were also observed in the lung sections of SARS-CoV-2-infected HFH4-hACE2 transgenic mouse model, a valid model for studying SARS-CoV-2 pathogenesis. Furthermore, analysis of the postmortem lung sections of fatal COVID-19 patients revealed not only apoptosis and necroptosis but also massive inflammatory cell infiltration, necrotic cell debris, and pulmonary interstitial fibrosis, typical of immune pathogenesis in the lung. The SARS-CoV-2 infection triggered a dual mode of cell death pathways and caspase-8-dependent inflammatory responses may lead to the lung damage in the COVID-19 patients. These discoveries might assist the development of therapeutic strategies to treat COVID-19.

244 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP-associated diseases.
Abstract: The NLRP3 inflammasome is a cytosolic multiprotein complex composed of the innate immune receptor protein NLRP3, adapter protein ASC, and inflammatory protease caspase-1 that responds to microbial infection, endogenous danger signals, and environmental stimuli. The assembled NLRP3 inflammasome can activate the protease caspase-1 to induce gasdermin D-dependent pyroptosis and facilitate the release of IL-1β and IL-18, which contribute to innate immune defense and homeostatic maintenance. However, aberrant activation of the NLRP3 inflammasome is associated with the pathogenesis of various inflammatory diseases, such as diabetes, cancer, and Alzheimer's disease. Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis. In addition, various effectors of cell death have been reported to regulate NLRP3 inflammasome activation, suggesting that cell death is closely related to NLRP3 inflammasome activation. In this review, we summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP3 inflammasome-associated diseases.

238 citations

Journal ArticleDOI
TL;DR: The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions.
Abstract: The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.

187 citations

Journal ArticleDOI
TL;DR: In this paper , the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 was evaluated.

105 citations

Journal ArticleDOI
TL;DR: In this article , the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
Abstract: Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.

92 citations