scispace - formally typeset
Search or ask a question
Author

Xiao-Dong Wu

Bio: Xiao-Dong Wu is an academic researcher from Texas A&M University. The author has contributed to research in topics: Dipole antenna & Microstrip. The author has an hindex of 1, co-authored 1 publications receiving 212 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this design procedure, the microstrip reflectarray has been shown to be an effective linear array capable of beam switching and dual polarization.
Abstract: Microstrip reflectarray antennas present an alternative to conventional directive antennas in that they are flat, inexpensive, easy to install and manufacture, conformal to the mounting surface, easy to package, and they possess high power and beam steering capabilities. For the first time, a comprehensive, experimentally verified design procedure for the microstrip reflectarray is presented. In this design procedure, the microstrip reflectarray has been shown to be an effective linear array capable of beam switching and dual polarization. The design procedure also allows the array to be fed from a feed-horn offset at any given angle to the plane of the array. The design procedure is well suited for CAD programs. >

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a periodic surface texture is used to alter the electromagnetic properties of a metal ground plane by covering the surface with varactor diodes, and a tunable impedance surface is built, in which an applied bias voltage controls the resonance frequency and the reflection phase.
Abstract: By covering a metal ground plane with a periodic surface texture, we can alter its electromagnetic properties. The impedance of this metasurface can be modeled as a parallel resonant circuit, with sheet inductance L, and sheet capacitance C. The reflection phase varies with frequency from +/spl pi/ to -/spl pi/, and crosses through 0 at the LC resonance frequency, where the surface behaves as an artificial magnetic conductor. By incorporating varactor diodes into the texture, we have built a tunable impedance surface, in which an applied bias voltage controls the resonance frequency, and the reflection phase. We can program the surface to create a tunable phase gradient, which can electronically steer a reflected beam over +/- 40/spl deg/ in two dimensions, for both polarizations. We have also found that this type of resonant surface texture can provide greater bandwidth than conventional reflectarray structures. This new electronically steerable reflector offers a low-cost alternative to a conventional phased array.

702 citations

Journal ArticleDOI
TL;DR: In this paper, a multilayer reflectarray composed of two stacked arrays with rectangular patches of variable size is demonstrated, and a progressive phase distribution on the reflector surface is achieved by adjusting the dimensions of the patches.
Abstract: A multilayer reflectarray composed of two stacked arrays with rectangular patches of variable size is demonstrated. A progressive phase distribution on the reflector surface is achieved by adjusting the dimensions of the patches. The phase of the reflection coefficient at each element is computed by the method of moments in the spectral domain, assuming local periodicity. A technique is presented for the design of dual polarization reflectarrays that yields all the dimensions for the photo-etching mask. A prototype has been design, built and measured, and a superior bandwidth performance has been verified, compared to conventional single layer reflectarrays.

613 citations

Journal ArticleDOI
TL;DR: In this paper, an electronically tunable reflectarray based on elements tuned using varactor diodes is presented, which accurately predicts the scattering characteristics of the unit cell as compared to experimental measurements.
Abstract: The reflectarray has significant promise in applications requiring high-gain, low-profile reflectors. Recent advances in tuning technology have raised the possibility of realizing electronically tunable reflectarrays, which can dynamically adjust their radiation patterns. This paper presents an electronically tunable reflectarray based on elements tuned using varactor diodes. Modeling approaches based on an equivalent circuit representation and computational electromagnetics simulations are presented. Both techniques accurately predict the scattering characteristics of the unit cell as compared to experimental measurements. The development of a unit cell with over 320omicron of phase agility at 5.5 GHz is discussed. Finally, a 70-element electronically tunable reflectarray prototype operating at 5.8 GHz is presented. Radiation pattern measurements with the reflectarray demonstrate its dynamic beam-forming characteristics. Measurements of the gain of the reflectarray correlate well with theoretical expectations.

273 citations

Journal ArticleDOI
TL;DR: In this paper, a reconfigurable microwave surface that performs as a new kind of beam steering reflector is described. The surface is textured with an array of tiny resonators, which provide a frequency-dependent surface impedance.
Abstract: We describe a reconfigurable microwave surface that performs as a new kind of beam steering reflector. The surface is textured with an array of tiny resonators, which provide a frequency-dependent surface impedance. By tuning the individual resonators, the surface impedance, and thus the reflection coefficient phase, can be varied as a function of position across the reflector. Using a reflection phase gradient, the surface can steer a reflected beam. As an example, we have built a simple mechanically tuned surface in which physical motion of only 1/100 wavelength generates a sufficient phase gradient to steer a reflected beam by /spl plusmn/16 degrees. To steer to greater angles, the surface can be configured as an artificial microwave grating, capable of /spl plusmn/38 degrees of beam steering. The concept of the tunable impedance surface demonstrated here can be extended to electrically controlled structures, which would permit more elaborate reflection phase patterns, and provide more capabilities, such as the ability to focus or steer multiple beams.

154 citations

Journal ArticleDOI
TL;DR: In this article, a 0.5-m right-hand circularly polarized planar reflectarray antenna is designed using microstrip ring elements of variable rotations to achieve a cophasal beam at broadside.
Abstract: This paper reports a dual frequency dual layer circularly polarized reflectarray operating in the C and Ka bands. A 0.5-m right-hand circularly polarized planar reflectarray antenna is designed using microstrip ring elements of variable rotations to achieve a cophasal beam at broadside. The microstrip ring elements are more compact than the traditional reflectarray elements and can minimize blockage for the multilayer multifrequency applications. The highest efficiencies measured are 46% at 7.3 GHz and 38% at 31.75 GHz. The tested cross-polarization levels are -21 dB at 7.3 GHz and -29.2 dB at 31.75 GHz at the broadside direction. The tested results show that the designed ring element is suitable for both the single and dual layer applications with good bandwidth and circularly polarized performance.

150 citations