scispace - formally typeset
Search or ask a question
Author

Xiao Liu

Bio: Xiao Liu is an academic researcher from Tsinghua University. The author has contributed to research in topics: Computer science & Graph. The author has an hindex of 19, co-authored 48 publications receiving 1139 citations. Previous affiliations of Xiao Liu include Beijing Institute of Technology & University of California, Berkeley.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This survey takes a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning, and comprehensively review the existing empirical methods into three main categories according to their objectives.
Abstract: Deep supervised learning has achieved great success in the last decade. However, its deficiencies of dependence on manual labels and vulnerability to attacks have driven people to explore a better solution. As an alternative, self-supervised learning attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further investigate related theoretical analysis work to provide deeper thoughts on how self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.

576 citations

Proceedings ArticleDOI
01 Jan 2018
TL;DR: This paper proposed a joint multiple event extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information.
Abstract: Event extraction is of practical utility in natural language processing. In the real world, it is a common phenomenon that multiple events existing in the same sentence, where extracting them are more difficult than extracting a single event. Previous works on modeling the associations between events by sequential modeling methods suffer a lot from the low efficiency in capturing very long-range dependencies. In this paper, we propose a novel Jointly Multiple Events Extraction (JMEE) framework to jointly extract multiple event triggers and arguments by introducing syntactic shortcut arcs to enhance information flow and attention-based graph convolution networks to model graph information. The experiment results demonstrate that our proposed framework achieves competitive results compared with state-of-the-art methods.

295 citations

Journal ArticleDOI
TL;DR: Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks as mentioned in this paper, however, its defects of heavy dependence on manual labels and vulnerability to attacks have driven people to find other paradigms.
Abstract: Deep supervised learning has achieved great success in the last decade. However, its defects of heavy dependence on manual labels and vulnerability to attacks have driven people to find other paradigms. As an alternative, self-supervised learning (SSL) attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further collect related theoretical analyses on self-supervised learning to provide deeper thoughts on why self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.

239 citations

Proceedings ArticleDOI
10 May 2019
TL;DR: A novel Relation-aware Dual-Graph Convolutional Network is proposed to incorporate relation information via attentive interactions between the knowledge graph and its dual relation counterpart, and further capture neighboring structures to learn better entity representations.
Abstract: Entity alignment is the task of linking entities with the same real-world identity from different knowledge graphs (KGs), which has been recently dominated by embedding-based methods. Such approaches work by learning KG representations so that entity alignment can be performed by measuring the similarities between entity embeddings. While promising, prior works in the field often fail to properly capture complex relation information that commonly exists in multi-relational KGs, leaving much room for improvement. In this paper, we propose a novel Relation-aware Dual-Graph Convolutional Network (RDGCN) to incorporate relation information via attentive interactions between the knowledge graph and its dual relation counterpart, and further capture neighboring structures to learn better entity representations. Experiments on three real-world cross-lingual datasets show that our approach delivers better and more robust results over the state-of-the-art alignment methods by learning better KG representations.

147 citations

Proceedings ArticleDOI
01 Jan 2022
TL;DR: The method P-Tuning v2 is an implementation of Deep Prompt Tuning (CITATION) optimized and adapted for NLU and can serve as an alternative to finetuning and a strong baseline for future research.
Abstract: Prompt tuning, which only tunes continuous prompts with a frozen language model, substantially reduces per-task storage and memory usage at training. However, in the context of NLU, prior work reveals that prompt tuning does not perform well for normal-sized pretrained models. We also find that existing methods of prompt tuning cannot handle hard sequence labeling tasks, indicating a lack of universality. We present a novel empirical finding that properly optimized prompt tuning can be universally effective across a wide range of model scales and NLU tasks. It matches the performance of finetuning while having only 0.1%-3% tuned parameters. Our method P-Tuning v2 is an implementation of Deep Prompt Tuning (CITATION) optimized and adapted for NLU. Given the universality and simplicity of P-Tuning v2, we believe it can serve as an alternative to finetuning and a strong baseline for future research.

139 citations


Cited by
More filters
Posted Content
TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Abstract: Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.

2,494 citations

Journal ArticleDOI
01 Jan 2020
TL;DR: In this paper, the authors propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
Abstract: Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.

1,266 citations

Journal ArticleDOI
TL;DR: The field of natural language processing has been propelled forward by an explosion in the use of deep learning models over the last several years as mentioned in this paper, which includes several core linguistic processing issues in addition to many applications of computational linguistics.
Abstract: Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This article provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to many applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

783 citations

01 Jan 2008
TL;DR: This work has identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism in Aspergillus nidulans, which inhibits sexual reproduction as well as secondary metabolism.
Abstract: Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans , light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.

627 citations