scispace - formally typeset
Search or ask a question
Author

Xiao Xin Yin

Bio: Xiao Xin Yin is an academic researcher from Southeast University. The author has contributed to research in topics: Microstrip & Antenna aperture. The author has an hindex of 3, co-authored 3 publications receiving 553 citations.

Papers
More filters
Proceedings ArticleDOI
01 Sep 2006
TL;DR: In this article, a new guided wave structure of half mode substrate integrated waveguide (HMSIW) for microwave and millimeter wave application is proposed for the first time.
Abstract: In this paper, a new guided wave structure of half mode substrate integrated waveguide (HMSIW) for microwave and millimeter wave application is proposed for the first time. The principle of the HMSIW is described, and its propagation characteristics are simulated and measured. The measured results at microwave and millimeter wave bands show that the attenuation of it is less than that of conventional microstrip and even SIW, but its size is nearly half of a SIW. Thus, we can further compress the size of a microwave or millimeter wave integrated circuit based on this new guided wave structure.

380 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated module with filtering and radiation performance realized by covering substrate integrated waveguide (SIW) cavity frequency selective surface (FSS) at aperture of horn antenna has been investigated.
Abstract: An integrated module with filtering and radiation performance realized by covering substrate integrated waveguide (SIW) cavity frequency selective surface (FSS) at aperture of horn antenna has been investigated in this paper. The module has functions of bandpass filter and horn antenna, so it is called a "filtering antenna" (filtenna). It is very suitable for applications in military platforms where FSS is used for antennas and radars' radar cross section (RCS) reduction. The filtenna is simulated and optimized with CST software and its performance is verified by experiments. From simulated and measured results it can be found that the proposed structure keeps characteristics of return loss, radiation pattern and gain of the horn antenna within desired frequency band, meanwhile presents effective reflection to interference signals at out-band. Using this structure the volume and cost of communication systems in military platforms can be effectively reduced

210 citations

Proceedings ArticleDOI
21 Mar 2007
TL;DR: In this paper, the advances in integrated microwave and millimeter wave antennas based on the substrate integrated waveguide (SIW) and half-mode SLAMIW technology are reviewed, including SIW/HMSIW slot array antennas, leakage wave antennas, omnidirectional antennas, monopulse antennas, filtennas, dielectric resonator antennas and rectennas etc.
Abstract: In this paper, the research advances in integrated microwave and millimeter wave antennas based the substrate integrated waveguide (SIW) and half-mode substrate integrated waveguide (HMSIW) technology are reviewed, including the SIW/HMSIW slot array antennas, leakage wave antennas, omnidirectional antennas, monopulse antennas, filtennas, dielectric resonator antennas and rectennas etc. The achievements summarized here are mainly limited to the recent work of the authors

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the propagation properties of the halfmode substrate integrated waveguide (HMSIW) were studied theoretically and experimentally in the frequency range of 20-60 GHz.
Abstract: The propagation properties of the half-mode substrate integrated waveguide (HMSIW) are studied theoretically and experimentally in this paper. Two equivalent models of the HMSIW are introduced. With the first model, equations are derived to approximate the field distribution inside and outside the HMSIW. Using the second model, an approximate closed-form expression is deduced for calculating the equivalent width of an HMSIW that takes into account the effect of the fringing fields. The obtained design formulas are validated by simulations and experiments. Furthermore, the attenuation characteristics of the HMSIW are studied using the multiline method in the frequency range of 20-60 GHz. A numerical investigation is carried out to distinguish between the contributions of the conductive, dielectric, and radiation losses. As a validation, the measured attenuation constant of a fabricated HMSIW prototype is presented and compared with that of a microstrip (MS) line and a substrate integrated waveguide (SIW). The SIW is designed with the same cutoff frequency and fabricated on the same substrate as the HMSIW. The experimental results show that the HMSIW can be less lossy than the MS line and the SIW at frequencies above 40 GHz.

342 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a CRLH leaky-wave antenna for antenna applications, which is realized by etching interdigital slots on the waveguide surface and the ground.
Abstract: Composite right/left-handed (CRLH) substrate integrated waveguide (SIW) and half mode substrate integrated waveguide (HMSIW) leaky-wave structures for antenna applications are proposed and investigated. Their propagation properties and radiation characteristics are studied extensively. Their backfire-to-endfire beam-steering capabilities through frequency scanning are demonstrated and discussed. These metamaterial radiating structures are realized by etching interdigital slots on the waveguide surface and the ground. The slot behaves as a series capacitor as well as a radiator leading to a CRLH leaky-wave application. Four antennas are fabricated, measured, and analyzed, including two balanced CRLH SIW designs characterized by single-side or double-side radiation, and two unbalanced HMSIW designs characterized by different boundary conditions. Antenna parameters such as return loss, radiation patterns, gain, and efficiency are all provided. Measured results are consistent with the simulation. All these proposed antennas possess the advantages of low profile, low cost, and low weight, while they are also showing their own unique features, like high directivity, quasi-omnidirectional radiation, miniaturized size, continuous beam-steering capabilities covering both the backward and forward quadrants, etc., providing much design flexibility for the real applications.

304 citations

Journal ArticleDOI
11 Jan 2021
TL;DR: In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization.
Abstract: Ever since the deployment of the first-generation of mobile telecommunications, wireless communication technology has evolved at a dramatically fast pace over the past four decades. The upcoming fifth-generation (5G) holds a great promise in providing an ultra-fast data rate, a very low latency, and a significantly improved spectral efficiency by exploiting the millimeter-wave spectrum for the first time in mobile communication infrastructures. In the years beyond 2030, newly emerged data-hungry applications and the greatly expanded wireless network will call for the sixth-generation (6G) communication that represents a significant upgrade from the 5G network – covering almost the entire surface of the earth and the near outer space. In both the 5G and future 6G networks, millimeter-wave technologies will play an important role in accomplishing the envisioned network performance and communication tasks. In this paper, the relevant millimeter-wave enabling technologies are reviewed: they include the recent developments on the system architectures of active beamforming arrays, beamforming integrated circuits, antennas for base stations and user terminals, system measurement and calibration, and channel characterization. The requirements of each part for future 6G communications are also briefly discussed.

278 citations

Journal ArticleDOI
TL;DR: In this article, the design and experiment of the half mode substrate integrated waveguide (HMSIW) bandpass filters are presented, and the measured results are in good agreement with the simulated results.
Abstract: This letter presents the design and experiment of the half mode substrate integrated waveguide (HMSIW) bandpass filters. Three-pole and five-pole HMSIW filters are simulated by using CST software and fabricated with a single layer standard printed circuit board process. Different external-coupling approaches are adopted in the design of the two filters. The measured results are in good agreement with the simulated results. Low insertion loss and good selectivity are achieved

272 citations

Journal ArticleDOI
TL;DR: In this article, a single-fed low profile cavity backed crossed slot antennas for dual frequency dual linear polarization and circular polarization applications are proposed by employing the substrate integrated waveguide (SIW) technique in the antenna designs.
Abstract: Single fed low profile cavity backed crossed slot antennas for dual frequency dual linear polarization and circular polarization applications are first presented in this paper. By employing the substrate integrated waveguide (SIW) technique in the antenna designs, the low profile backed cavity structure can be realized by using only a single layer of low cost printed circuit board (PCB) substrate. A single grounded coplanar waveguide (GCPW) is employed as the feeding element to excite the TE 120 and TE 210 modes in the SIW cavity. A crossed slot structure is used as the radiating element in order to radiate the desired dual linearly or circularly polarized wave. From the measurement results, it is seen that these novel antennas retain the advantages of conventional metallic cavity backed antennas, including high gain, high front-to-back ratio (FTBR), and low cross polarization level (CPL). Furthermore, the proposed antennas also possess the advantages of low profile, light weight, low fabrication cost, and easy integration with planar circuits.

263 citations