scispace - formally typeset
Search or ask a question
Author

Xiao-Yang Zhi

Bio: Xiao-Yang Zhi is an academic researcher from Yunnan University. The author has contributed to research in topics: Phylogenetic tree & Phylogenomics. The author has an hindex of 24, co-authored 74 publications receiving 1948 citations. Previous affiliations of Xiao-Yang Zhi include Chinese Ministry of Education & Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: New 16S rRNA signature nucleotide patterns of taxa above the family level are presented and the affiliation of genera to families are indicated and the phylogenetic relationships of Actinobacteria at higher levels may need to be reconstructed.
Abstract: The higher ranks of the class Actinobacteria were proposed and described in 1997. At each rank, the taxa were delineated from each other solely on the basis of 16S rRNA gene sequence phylogenetic clustering and taxon-specific 16S rRNA signature nucleotides. In the past 10 years, many novel members have been assigned to this class while, at the same time, some members have been reclassified. The new 16S rRNA gene sequence information and the changes in phylogenetic positions of some taxa influence decisions about which 16S rRNA nucleotides to define as taxon-specific. As a consequence, the phylogenetic relationships of Actinobacteria at higher levels may need to be reconstructed. Here, we present new 16S rRNA signature nucleotide patterns of taxa above the family level and indicate the affiliation of genera to families. These sets replace the signatures published in 1997. In addition, Actinopolysporineae subord. nov. and Actinopolysporaceae fam. nov. are proposed to accommodate the genus Actinopolyspora, Kineosporiineae subord. nov. and Kineosporiaceae fam. nov. are proposed to accommodate the genera Kineococcus, Kineosporia and Quadrisphaera, Beutenbergiaceae fam. nov. is proposed to accommodate the genera Beutenbergia, Georgenia and Salana and Cryptosporangiaceae fam. nov. is proposed to accommodate the genus Cryptosporangium. The families Nocardiaceae and Gordoniaceae are proposed to be combined in an emended family Nocardiaceae. Emended descriptions are also proposed for most of the other higher taxa.

503 citations

Journal ArticleDOI
09 Jan 2013-PLOS ONE
TL;DR: A comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian significantly expands the current understanding of the microbiology in Tengchong hot springs.
Abstract: The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.

199 citations

Journal ArticleDOI
TL;DR: Findings from this study significantly improve the understanding of microbial diversity in terrestrial hot springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world.
Abstract: Summary Thousands of hot springs are located in the north-eastern part of the Yunnan–Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2–8.6; temperature 47–96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.

112 citations

Journal ArticleDOI
TL;DR: DDH analysis demonstrated that H. lutea is a distinctive species, and halophilic features and nitrogen metabolism related genes were discovered in its genome.
Abstract: Species of the genus Halomonas are halophilic and their flexible adaption to changes of salinity and temperature brings considerable potential biotechnology applications, such as degradation of organic pollutants and enzyme production. The type strain Halomonas lutea YIM 91125T was isolated from a hypersaline lake in China. The genome of strain YIM 91125T becomes the twelfth species sequenced in Halomonas, and the thirteenth species sequenced in Halomonadaceae. We described the features of H. lutea YIM 91125T, together with the high quality draft genome sequence and annotation of its type strain. The 4,533,090 bp long genome of strain YIM 91125T with its 4,284 protein-coding and 84 RNA genes is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG-I) project. From the viewpoint of comparative genomics, H. lutea has a larger genome size and more specific genes, which indicated acquisition of function bringing better adaption to its environment. DDH analysis demonstrated that H. lutea is a distinctive species, and halophilic features and nitrogen metabolism related genes were discovered in its genome.

90 citations

Journal ArticleDOI
30 Jun 2014-PLOS ONE
TL;DR: It is suggested that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Abstract: Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

76 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: Current Protocols in Molecular Biology Title NLM.

1,258 citations

Journal ArticleDOI
TL;DR: Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems.
Abstract: Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.

1,199 citations

Journal ArticleDOI
TL;DR: The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision).
Abstract: The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.

591 citations