scispace - formally typeset
Search or ask a question
Author

Xiaodi Hou

Other affiliations: Shanghai Jiao Tong University
Bio: Xiaodi Hou is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Deep learning & Segmentation. The author has an hindex of 20, co-authored 39 publications receiving 9297 citations. Previous affiliations of Xiaodi Hou include Shanghai Jiao Tong University.

Papers
More filters
Proceedings ArticleDOI
17 Jun 2007
TL;DR: A simple method for the visual saliency detection is presented, independent of features, categories, or other forms of prior knowledge of the objects, and a fast method to construct the corresponding saliency map in spatial domain is proposed.
Abstract: The ability of human visual system to detect visual saliency is extraordinarily fast and reliable. However, computational modeling of this basic intelligent behavior still remains a challenge. This paper presents a simple method for the visual saliency detection. Our model is independent of features, categories, or other forms of prior knowledge of the objects. By analyzing the log-spectrum of an input image, we extract the spectral residual of an image in spectral domain, and propose a fast method to construct the corresponding saliency map in spatial domain. We test this model on both natural pictures and artificial images such as psychological patterns. The result indicate fast and robust saliency detection of our method.

3,464 citations

Proceedings ArticleDOI
12 Mar 2018
TL;DR: DUC is designed to generate pixel-level prediction, which is able to capture and decode more detailed information that is generally missing in bilinear upsampling, and a hybrid dilated convolution (HDC) framework in the encoding phase is proposed.
Abstract: Recent advances in deep learning, especially deep convolutional neural networks (CNNs), have led to significant improvement over previous semantic segmentation systems. Here we show how to improve pixel-wise semantic segmentation by manipulating convolution-related operations that are of both theoretical and practical value. First, we design dense upsampling convolution (DUC) to generate pixel-level prediction, which is able to capture and decode more detailed information that is generally missing in bilinear upsampling. Second, we propose a hybrid dilated convolution (HDC) framework in the encoding phase. This framework 1) effectively enlarges the receptive fields (RF) of the network to aggregate global information; 2) alleviates what we call the "gridding issue"caused by the standard dilated convolution operation. We evaluate our approaches thoroughly on the Cityscapes dataset, and achieve a state-of-art result of 80.1% mIOU in the test set at the time of submission. We also have achieved state-of-theart overall on the KITTI road estimation benchmark and the PASCAL VOC2012 segmentation task. Our source code can be found at https://github.com/TuSimple/TuSimple-DUC.

1,358 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: An extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets identifies serious design flaws of existing salient object benchmarks and proposes a new high quality dataset that offers both fixation and salient objects segmentation ground-truth.
Abstract: In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasising the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on 3 existing datasets of segmenting salient objects.

1,089 citations

Journal ArticleDOI
TL;DR: It is demonstrated with a change blindness data set that the distance between images induced by the image signature is closer to human perceptual distance than can be achieved using other saliency algorithms, pixel-wise, or GIST descriptor methods.
Abstract: We introduce a simple image descriptor referred to as the image signature. We show, within the theoretical framework of sparse signal mixing, that this quantity spatially approximates the foreground of an image. We experimentally investigate whether this approximate foreground overlaps with visually conspicuous image locations by developing a saliency algorithm based on the image signature. This saliency algorithm predicts human fixation points best among competitors on the Bruce and Tsotsos [1] benchmark data set and does so in much shorter running time. In a related experiment, we demonstrate with a change blindness data set that the distance between images induced by the image signature is closer to human perceptual distance than can be achieved using other saliency algorithms, pixel-wise, or GIST [2] descriptor methods.

929 citations

Posted Content
TL;DR: In this paper, the authors provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets, and propose a new high quality dataset that offers both fixations and salient objects.
Abstract: In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasizing the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on three existing datasets of segmenting salient objects

878 citations


Cited by
More filters
Book ChapterDOI
Liang-Chieh Chen1, Yukun Zhu1, George Papandreou1, Florian Schroff1, Hartwig Adam1 
08 Sep 2018
TL;DR: This work extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries and applies the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network.
Abstract: Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89% and 82.1% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at https://github.com/tensorflow/models/tree/master/research/deeplab.

7,113 citations

Journal ArticleDOI
TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Abstract: Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

5,782 citations

Posted Content
TL;DR: The proposed `DeepLabv3' system significantly improves over the previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.
Abstract: In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter's field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in parallel to capture multi-scale context by adopting multiple atrous rates. Furthermore, we propose to augment our previously proposed Atrous Spatial Pyramid Pooling module, which probes convolutional features at multiple scales, with image-level features encoding global context and further boost performance. We also elaborate on implementation details and share our experience on training our system. The proposed `DeepLabv3' system significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2012 semantic image segmentation benchmark.

5,691 citations

Proceedings ArticleDOI
27 Jun 2016
TL;DR: A Neural Algorithm of Artistic Style is introduced that can separate and recombine the image content and style of natural images and provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.
Abstract: Rendering the semantic content of an image in different styles is a difficult image processing task. Arguably, a major limiting factor for previous approaches has been the lack of image representations that explicitly represent semantic information and, thus, allow to separate image content from style. Here we use image representations derived from Convolutional Neural Networks optimised for object recognition, which make high level image information explicit. We introduce A Neural Algorithm of Artistic Style that can separate and recombine the image content and style of natural images. The algorithm allows us to produce new images of high perceptual quality that combine the content of an arbitrary photograph with the appearance of numerous wellknown artworks. Our results provide new insights into the deep image representations learned by Convolutional Neural Networks and demonstrate their potential for high level image synthesis and manipulation.

4,888 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: New state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff dataset is achieved without using coarse data.
Abstract: In this paper, we address the scene segmentation task by capturing rich contextual dependencies based on the self-attention mechanism. Unlike previous works that capture contexts by multi-scale features fusion, we propose a Dual Attention Networks (DANet) to adaptively integrate local features with their global dependencies. Specifically, we append two types of attention modules on top of traditional dilated FCN, which model the semantic interdependencies in spatial and channel dimensions respectively. The position attention module selectively aggregates the features at each position by a weighted sum of the features at all positions. Similar features would be related to each other regardless of their distances. Meanwhile, the channel attention module selectively emphasizes interdependent channel maps by integrating associated features among all channel maps. We sum the outputs of the two attention modules to further improve feature representation which contributes to more precise segmentation results. We achieve new state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff dataset. In particular, a Mean IoU score of 81.5% on Cityscapes test set is achieved without using coarse data.

4,327 citations