scispace - formally typeset
Search or ask a question
Author

Xiaodong Li

Bio: Xiaodong Li is an academic researcher from University of California, Davis. The author has contributed to research in topics: Convex optimization & Matrix completion. The author has an hindex of 26, co-authored 42 publications receiving 10704 citations. Previous affiliations of Xiaodong Li include University of Pennsylvania & Stanford University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Abstract: This article is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individuallyq We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.

6,783 citations

Journal ArticleDOI
TL;DR: In this article, a nonconvex formulation of the phase retrieval problem was proposed and a concrete solution algorithm was presented. But the main contribution is that this algorithm is shown to rigorously allow the exact retrieval of phase information from a nearly minimal number of random measurements.
Abstract: We study the problem of recovering the phase from magnitude measurements; specifically, we wish to reconstruct a complex-valued signal $ \boldsymbol {x}\in \mathbb {C}^{n}$ about which we have phaseless samples of the form $y_{r} = \left |{\langle \boldsymbol {a}_{r}, \boldsymbol {x} \rangle }\right |^{2}$ , $r = 1,\ldots , m$ (knowledge of the phase of these samples would yield a linear system). This paper develops a nonconvex formulation of the phase retrieval problem as well as a concrete solution algorithm. In a nutshell, this algorithm starts with a careful initialization obtained by means of a spectral method, and then refines this initial estimate by iteratively applying novel update rules, which have low computational complexity, much like in a gradient descent scheme. The main contribution is that this algorithm is shown to rigorously allow the exact retrieval of phase information from a nearly minimal number of random measurements. Indeed, the sequence of successive iterates provably converges to the solution at a geometric rate so that the proposed scheme is efficient both in terms of computational and data resources. In theory, a variation on this scheme leads to a near-linear time algorithm for a physically realizable model based on coded diffraction patterns. We illustrate the effectiveness of our methods with various experiments on image data. Underlying our analysis are insights for the analysis of nonconvex optimization schemes that may have implications for computational problems beyond phase retrieval.

1,096 citations

Posted Content
TL;DR: This result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level, the first result that shows the classical Principal Component Analysis, optimal for small i.i.d. noise, can be made robust to gross sparse errors.
Abstract: In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entrywise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.

470 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: In this article, a convex program, named Principal Component Pursuit (PCP), is proposed to recover the low-rank matrix from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors.
Abstract: In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entry-wise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.

454 citations

Journal ArticleDOI
TL;DR: It is shown that any complex vector can be recovered exactly from on the order of n quadratic equations of the form |〈ai,x0〉|2=bi, i=1,…,m, by using a semidefinite program known as PhaseLift, improving upon earlier bounds.
Abstract: This note shows that we can recover any complex vector $\boldsymbol {x}_{0} \in \mathbb {C}^{n}$ exactly from on the order of n quadratic equations of the form |?a i ,x 0?|2=b i , i=1,?,m, by using a semidefinite program known as PhaseLift. This improves upon earlier bounds in Candes et al. (Commun. Pure Appl. Math. 66:1241---1274, 2013), which required the number of equations to be at least on the order of nlogn. Further, we show that exact recovery holds for all input vectors simultaneously, and also demonstrate optimal recovery results from noisy quadratic measurements; these results are much sharper than previously known results.

366 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The basic ideas of PCA are introduced, discussing what it can and cannot do, and some variants of the technique have been developed that are tailored to various different data types and structures.
Abstract: Large datasets are increasingly common and are often difficult to interpret. Principal component analysis (PCA) is a technique for reducing the dimensionality of such datasets, increasing interpretability but at the same time minimizing information loss. It does so by creating new uncorrelated variables that successively maximize variance. Finding such new variables, the principal components, reduces to solving an eigenvalue/eigenvector problem, and the new variables are defined by the dataset at hand, not a priori , hence making PCA an adaptive data analysis technique. It is adaptive in another sense too, since variants of the technique have been developed that are tailored to various different data types and structures. This article will begin by introducing the basic ideas of PCA, discussing what it can and cannot do. It will then describe some variants of PCA and their application.

4,289 citations

Book
27 Nov 2013
TL;DR: The many different interpretations of proximal operators and algorithms are discussed, their connections to many other topics in optimization and applied mathematics are described, some popular algorithms are surveyed, and a large number of examples of proxiesimal operators that commonly arise in practice are provided.
Abstract: This monograph is about a class of optimization algorithms called proximal algorithms. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Here, we discuss the many different interpretations of proximal operators and algorithms, describe their connections to many other topics in optimization and applied mathematics, survey some popular algorithms, and provide a large number of examples of proximal operators that commonly arise in practice.

3,627 citations

Journal ArticleDOI
TL;DR: It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, it is proved that under certain conditions LRR can exactly recover the row space of the original data.
Abstract: In this paper, we address the subspace clustering problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to cluster the samples into their respective subspaces and remove possible outliers as well. To this end, we propose a novel objective function named Low-Rank Representation (LRR), which seeks the lowest rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, we prove that LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for data corrupted by arbitrary sparse errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace clustering and error correction in an efficient and effective way.

3,085 citations

Journal ArticleDOI
TL;DR: The genetic identity of each virus particle present in the mixture can be assigned based solely on the structural information derived from single envelope glycoproteins displayed on the virus surface by the nuclear norm-based, collaborative alignment method presented here.

2,410 citations

Journal ArticleDOI
TL;DR: In this paper, a convex programming problem is used to find the matrix with the minimum nuclear norm that is consistent with the observed entries in a low-rank matrix, which is then used to recover all the missing entries from most sufficiently large subsets.
Abstract: Suppose that one observes an incomplete subset of entries selected from a low-rank matrix. When is it possible to complete the matrix and recover the entries that have not been seen? We demonstrate that in very general settings, one can perfectly recover all of the missing entries from most sufficiently large subsets by solving a convex programming problem that finds the matrix with the minimum nuclear norm agreeing with the observed entries. The techniques used in this analysis draw upon parallels in the field of compressed sensing, demonstrating that objects other than signals and images can be perfectly reconstructed from very limited information.

2,327 citations