scispace - formally typeset
Search or ask a question
Author

Xiaogang Liu

Bio: Xiaogang Liu is an academic researcher from National University of Singapore. The author has contributed to research in topics: Medicine & Photon upconversion. The author has an hindex of 94, co-authored 425 publications receiving 41825 citations. Previous affiliations of Xiaogang Liu include Heilongjiang University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A combination of decatungstate and a cobaloxime catalyst for the photocatalytic dehydrogenative alkenylation of alkanes and aliphatic aldehydes with aryl alkenes in the absence of any external oxidant is reported.
Abstract: The dehydrogenative alkenylation of C-H bonds with alkenes represents an atom- and step-economical approach for olefin synthesis and molecular editing. Site-selective alkenylation of alkanes and aldehydes with the C-H substrate as the limiting reagent holds significant synthetic value. We herein report a photocatalytic method for the direct alkenylation of alkanes and aldehydes with aryl alkenes in the absence of any external oxidant. A diverse range of commodity feedstocks and pharmaceutical compounds are smoothly alkenylated in useful yields with the C-H partner as the limiting reagent. The late-stage alkenylation of complex molecules occurs with high levels of site selectivity for sterically accessible and electron-rich C-H bonds. This strategy relies on the synergistic combination of direct hydrogen atom transfer photocatalysis with cobaloxime-mediated hydrogen-evolution cross-coupling, which promises to inspire additional perspectives for selective C-H functionalizations in a green manner.

99 citations

Journal ArticleDOI
01 Aug 2006-Small
TL;DR: A wide range of morphologies in the form of triangles, octahedra, pentagonal decahedRA, platelets, and nanowires with well-defined morphologies can be derived by varying the composition and ratio of the ligand mixture.
Abstract: Micrometer-sized gold crystals have been synthesized through a binary mixture of amine ligand molecules in the presence of a gold precursor under slow growth conditions (see picture). A wide range of morphologies in the form of triangles, octahedra, pentagonal decahedra, platelets, and nanowires with well-defined morphologies can be derived by varying the composition and ratio of the ligand mixture.

98 citations

Journal ArticleDOI
18 Mar 2005-Science
TL;DR: It is presented a method for controlling the initiation and kinetics of polymer crystal growth using dip-pen nanolithography and an atomic force microscope tip coated with poly-dl-lysine hydrobromide and a set of photographic images of the process as it spans the nanometer- to micrometer-length scales as a function of environmental conditions.
Abstract: We present a method for controlling the initiation and kinetics of polymer crystal growth using dip-pen nanolithography and an atomic force microscope tip coated with poly-dl-lysine hydrobromide. Triangular prisms of the polymer epitaxially grow on freshly cleaved mica substrates, and their in-plane and out-of-plane growth rates can be controlled by raster scanning the coated tip across the substrate. Atomic force microscope images were concomitantly recorded, providing a set of photographic images of the process as it spans the nanometer- to micrometer-length scales as a function of environmental conditions.

97 citations

Journal ArticleDOI
TL;DR: This work shows that the migration-coupled approach can dramatically improve sensitivity in FRET-limited measurement, with potential applications ranging from facile photochemical synthesis to biological sensing and imaging at the single-molecule level.
Abstract: The stringent distance dependence of Forster resonance energy transfer (FRET) has limited the ability of an energy donor to donate excitation energy to an acceptor over a Forster critical distance (R0) of 2–6 nm. This poses a fundamental size constraint (<8 nm or ∼4R0) for experimentation requiring particle-based energy donors. Here, we describe a spatial distribution function model and theoretically validate that the particle size constraint can be mitigated through coupling FRET with a resonant energy migration process. By combining excitation energy migration and surface trapping, we demonstrate experimentally an over 600-fold enhancement over acceptor emission for large nanocrystals (30 nm or ∼15R0) with surface-anchored molecular acceptors. Our work shows that the migration-coupled approach can dramatically improve sensitivity in FRET-limited measurement, with potential applications ranging from facile photochemical synthesis to biological sensing and imaging at the single-molecule level.

95 citations

Journal ArticleDOI
TL;DR: In this article, three different empirical solvatochromic models are assessed against 13 coumarins, and a combinatorial approach to determine the best-fit equations in all of the empirical models is applied; this involves both statistical best-fits and the physical validation of the resulting parameters.
Abstract: Coumarins often function in the solution phase for a diverse range of optoelectronic applications. The associated solvent effects on the UV–vis absorption and/or fluorescence spectral shifts of coumarins need to be understood in order that their photochemistry can be controlled. To this end, three different empirical solvatochromic models are assessed against 13 coumarins. The two generalized solvent scales developed by Catalan and co-workers demonstrate comparable performance to the popular Taft–Kamlet solvatochromic comparison method. A combinatorial approach to determine the best-fit equations in all of the empirical models is applied; this involves both statistical best-fits and the physical validation of the resulting parameters, based on the molecular structures of solvents and solutes and their corresponding interactions. The findings of this approach are used to extract useful information about different aspects of solvent effects on the solvatochromism of coumarins.

95 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
TL;DR: Physical structure is known to contribute to the appearance of bird plumage through structural color and specular reflection, but a third mechanism, structural absorption, leads to low reflectance and super black color in birds of paradise feathers.
Abstract: Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05-0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.

5,916 citations