scispace - formally typeset
Search or ask a question
Author

Xiaogang Liu

Bio: Xiaogang Liu is an academic researcher from National University of Singapore. The author has contributed to research in topics: Medicine & Photon upconversion. The author has an hindex of 94, co-authored 425 publications receiving 41825 citations. Previous affiliations of Xiaogang Liu include Heilongjiang University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Although all of these attempts were successful in principle, there were significant limitations associated with the use of high-intensity UV or visible light in the photo-activation process.
Abstract: Although all of these attempts were successfulin principle, there were significant limitations associated withthe use of high-intensity UV or visible light in the photo-activation process. Excessive exposure to UV light can causephotoreactions in nucleic acids and result in cellular damage.Furthermore, short-wavelength UV or visible light does notpenetrate into tissue very far, which limits its utility for deep-tissue imaging by photoactivation of the caged compounds.Alternatively, multiphoton photolysis with long-wavelengthexcitation has been used to enable deep-tissue imaging and totarget gene expression

428 citations

Journal ArticleDOI
TL;DR: In this article, the use of black silicon (BSi) as an anti-reflection coating in solar cells is examined and appraised, based upon strategies towards higher efficiency renewable solar energy modules.
Abstract: Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. In this paper, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, based upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al2O3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.

397 citations

Journal ArticleDOI
TL;DR: This work designs and fabricates nanoparticles displaying tailorable optical properties and demonstrates that an inert-shell coating provides the particles with stable emission against perturbation in surrounding environments, paving the way for their applications in the context of biological networks.
Abstract: ConspectusLanthanide-doped nanoparticles exhibit unique luminescent properties, including large Stokes shift, sharp emission bandwidth, high resistance to optical blinking, and photobleaching, as well as the unique ability to convert long-wavelength stimulation into short-wavelength emission. These attributes are particularly needed for developing luminescent labels as alternatives to organic fluorophores and quantum dots. In recent years, the well-recognized advantages of upconversion nanocrystals as biomarkers have been manifested in many important applications, such as highly sensitive molecular detection and autofluorescence-free cell imaging. However, their potential in multiplexed detection and multicolor imaging is rarely exploited, largely owing to the research lagging on multicolor tuning of these particles.Lanthanide doping typically involves an insulating host matrix and a trace amount of lanthanide dopants embedded in the host lattice. The luminescence observed from these doped crystalline mat...

383 citations

Journal ArticleDOI
TL;DR: This work experimentally solves the problem of cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques.
Abstract: Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green, and blue light is also demonstrated.

381 citations

Journal ArticleDOI
TL;DR: The rational design, synthesis, and characterization of a new class of core-shell upconversion nanoparticles displaying unprecedented optical properties are presented, and it is shown that the epitaxial growth of an optically inert NaYF(4) layer around a lanthanide-doped NaGdF( 4)@NaGd F(4), core- shell nanoparticle effectively prevents surface quenching of excitation energy.
Abstract: Lanthanide-doped upconversion nanoparticles have been the focus of a growing body of investigation because of their promising applications ranging from data storage to biological imaging and drug delivery. Here we present the rational design, synthesis, and characterization of a new class of core–shell upconversion nanoparticles displaying unprecedented optical properties. Specifically, we show that the epitaxial growth of an optically inert NaYF4 layer around a lanthanide-doped NaGdF4@NaGdF4 core–shell nanoparticle effectively prevents surface quenching of excitation energy. At room temperature, the energy migrates over Gd sublattices and is adequately trapped by the activator ions embedded in host lattices. Importantly, the NaYF4 shell-coating strategy gives access to tunable upconversion emissions from a variety of activators (Dy3+, Sm3+, Tb3+, and Eu3+) doped at very low concentrations (down to 1 mol %). Our mechanistic investigations make possible, for the first time, the realization of efficient emi...

373 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
08 Jun 2001-Science
TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Abstract: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 03 nanometer The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis

8,592 citations

Journal ArticleDOI
TL;DR: Physical structure is known to contribute to the appearance of bird plumage through structural color and specular reflection, but a third mechanism, structural absorption, leads to low reflectance and super black color in birds of paradise feathers.
Abstract: Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05-0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.

5,916 citations