scispace - formally typeset
Search or ask a question
Author

Xiaogang Wang

Bio: Xiaogang Wang is an academic researcher from Zhejiang A & F University. The author has contributed to research in topics: Encryption & Fourier transform. The author has an hindex of 25, co-authored 59 publications receiving 1819 citations. Previous affiliations of Xiaogang Wang include Zhejiang University of Science and Technology & Zhejiang University.


Papers
More filters
Journal ArticleDOI
TL;DR: Analyzing the security of a recently proposed asymmetric cryptosystem that based on the phase-truncated Fourier transforms (PTFTs) implies that some appropriate measurements should be made to enhance the resistance of the PTFT-based cryptos system against the specific attack when it is used as a public-key cryptosSystem.

217 citations

Journal ArticleDOI
TL;DR: A discussion and a cryptanalysis of the optical phase-truncated Fourier-transform-based cryptosystem are presented and it is shown that the computing efficiency of the algorithm is improved and the number of iterations is much less than that by the specific attack, which has two iteration loops.
Abstract: A discussion and a cryptanalysis of the optical phase-truncated Fourier-transform-based cryptosystem are presented in this paper. The concept of an optical asymmetric cryptosystem, which was introduced into the optical image encryption scheme based on phase-truncated Fourier transforms in 2010, is suggested to be retained in optical encryption. A new method of attack is also proposed to simultaneously obtain the main information of the original image, the two decryption keys from its cyphertext, and the public keys based on the modified amplitude-phase retrieval algorithm. The numerical results illustrate that the computing efficiency of the algorithm is improved and the number of iterations is much less than that by the specific attack, which has two iteration loops.

112 citations

Journal ArticleDOI
TL;DR: Molecular dynamics simulation shows that pristine graphene (PG) can readily penetrate into the bilayer and has no effect on the integrity of membrane.
Abstract: Graphene nanosheet has exhibited an increasing prospect in various biomedical applications because of its extraordinary properties. Meanwhile, recent experiments have shown that graphene has antibacterial activity or cytotoxicity and can cause cell membrane damage. Therefore, it is necessary to understand the interactions between graphene and cell membrane to avoid its adverse effects. Here, we use molecular dynamics simulation to explore these interactions. The results show that pristine graphene (PG) can readily penetrate into the bilayer and has no effect on the integrity of membrane. When graphene oxide (GO) is embedded in the membrane, several lipids are pulled out of the membrane to the surface of GO, resulting in the pore formation and water molecules flowing into the membrane. The difference between PG and GO in the membrane originates from GO’s oxygen-contained groups, which enhance the adsorption of the lipids on GO surface. However, the main interactions between GO and membrane are still determ...

99 citations

Journal ArticleDOI
TL;DR: A new method for image encryption based on optical interference and analytical algorithm that can be directly applied to image encryption due to the silhouette problem that exists in the method with two POMs is proposed.
Abstract: The earlier proposed interference-based encryption method with two phase-only masks (POMs), which actually is a special case of our method, is quite simple and does not need iterative encoding. However, it has been found recently that the encryption method has security problems and cannot be directly applied to image encryption due to the inherent silhouette problem. Several methods based on chaotic encryption algorithms have been proposed to remove the problem by postprocessing of the POMs, which increased the computation time or led to digital inverse computation in decryption. Here we propose a new method for image encryption based on optical interference and analytical algorithm that can be directly used for image encryption. The information of the target image is hidden into three POMs, and the silhouette problem that exists in the method with two POMs can be resolved during the generation procedure of POMs based on the interference principle. Simulation results are presented to verify the validity of the proposed approach.

94 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra as discussed by the authors, which has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc.
Abstract: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra. The concept has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc. The inclusion of nonlinearity has led to a number of new phenomena for which no counterparts exist in traditional dissipative systems. Several examples of nonlinear parity-time symmetric systems in different physical disciplines are presented and their implications discussed.

938 citations

Journal ArticleDOI
TL;DR: Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage and the advantages and limitations of a set of optical compression and encryption methods are discussed.
Abstract: Over the years extensive studies have been carried out to apply coherent optics methods in real-time communications and image transmission. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. However, the transmitted data can be intercepted by nonauthorized people. This explains why considerable effort is being devoted at the current time to data encryption and secure transmission. In addition, only a small part of the overall information is really useful for many applications. Consequently, applications can tolerate information compression that requires important processing when the transmission bit rate is taken into account. To enable efficient and secure information exchange, it is often necessary to reduce the amount of transmitted information. In this context, much work has been undertaken using the principle of coherent optics filtering for selecting relevant information and encrypting it. Compression and encryption operations are often carried out separately, although they are strongly related and can influence each other. Optical processing methodologies, based on filtering, are described that are applicable to transmission and/or data storage. Finally, the advantages and limitations of a set of optical compression and encryption methods are discussed.

463 citations

Journal ArticleDOI
TL;DR: A technique to recover the exact keys with only two known plain images is described, and this technique is compared to other attacks proposed in the literature.
Abstract: Several attacks are proposed against the double random phase encryption scheme. These attacks are demonstrated on computer-generated ciphered images. The scheme is shown to be resistant against brute force attacks but susceptible to chosen and known plaintext attacks. In particular, we describe a technique to recover the exact keys with only two known plain images. We compare this technique to other attacks proposed in the literature.

444 citations

Journal ArticleDOI
TL;DR: This paper presents a review of optical technologies for information security, and theoretical principles and implementation examples are presented to illustrate each optical security system.
Abstract: Information security with optical means, such as double random phase encoding, has been investigated by various researchers. It has been demonstrated that optical technology possesses several unique characteristics for securing information compared with its electronic counterpart, such as many degrees of freedom. In this paper, we present a review of optical technologies for information security. Optical security systems are reviewed, and theoretical principles and implementation examples are presented to illustrate each optical security system. In addition, advantages and potential weaknesses of each optical security system are analyzed and discussed. It is expected that this review not only will provide a clear picture about current developments in optical security systems but also may shed some light on future developments.

415 citations