scispace - formally typeset
Search or ask a question
Author

Xiaoge Liu

Bio: Xiaoge Liu is an academic researcher from Geballe Laboratory for Advanced Materials. The author has contributed to research in topics: Indium tin oxide & Plasmon. The author has an hindex of 12, co-authored 13 publications receiving 2019 citations. Previous affiliations of Xiaoge Liu include University of Science and Technology of China & National Tsing Hua University.

Papers
More filters
Journal ArticleDOI
TL;DR: A broadband photodetector using a layered black phosphorus transistor that is polarization-sensitive over a bandwidth from ∼400 nm to 3,750‽nm is demonstrated and might provide new functionalities in novel optical and optoelectronic device applications.
Abstract: The ability to detect light over a broad spectral range is central to practical optoelectronic applications and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS2. However, polarization sensitivity within such a photodetector remains elusive. Here, we demonstrate a broadband photodetector using a layered black phosphorus transistor that is polarization-sensitive over a bandwidth from ∼400 nm to 3,750 nm. The polarization sensitivity is due to the strong intrinsic linear dichroism, which arises from the in-plane optical anisotropy of this material. In this transistor geometry, a perpendicular built-in electric field induced by gating can spatially separate the photogenerated electrons and holes in the channel, effectively reducing their recombination rate and thus enhancing the performance for linear dichroism photodetection. The use of anisotropic layered black phosphorus in polarization-sensitive photodetection might provide new functionalities in novel optical and optoelectronic device applications. The anisotropic optical properties of black phosphorus can be exploited to fabricate photodetectors with linear dichroism operating over a broad spectral range.

973 citations

Journal ArticleDOI
TL;DR: This nanowire-embedded cloth can efficiently warm human bodies and save hundreds of watts per person as compared to traditional indoor heaters.
Abstract: Heating consumes large amount of energy and is a primary source of greenhouse gas emission. Although energy-efficient buildings are developing quickly based on improving insulation and design, a large portion of energy continues to be wasted on heating empty space and nonhuman objects. Here, we demonstrate a system of personal thermal management using metallic nanowire-embedded cloth that can reduce this waste. The metallic nanowires form a conductive network that not only is highly thermal insulating because it reflects human body infrared radiation but also allows Joule heating to complement the passive insulation. The breathability and durability of the original cloth is not sacrificed because of the nanowires’ porous structure. This nanowire cloth can efficiently warm human bodies and save hundreds of watts per person as compared to traditional indoor heaters.

375 citations

Journal ArticleDOI
TL;DR: Two-dimensional layered materials like MoS2 have shown promise for nanoelectronics and energy storage, both as monolayers and as bulk van der Waals crystals with tunable properties by electrochemically inserting a foreign species (Li(+) ions) into their interlayer spacing.
Abstract: Two-dimensional layered materials like MoS2 have shown promise for nanoelectronics and energy storage, both as monolayers and as bulk van der Waals crystals with tunable properties. Here we present a platform to tune the physical and chemical properties of nanoscale MoS2 by electrochemically inserting a foreign species (Li+ ions) into their interlayer spacing. We discover substantial enhancement of light transmission (up to 90% in 4 nm thick lithiated MoS2) and electrical conductivity (more than 200×) in ultrathin (∼2–50 nm) MoS2 nanosheets after Li intercalation due to changes in band structure that reduce absorption upon intercalation and the injection of large amounts of free carriers. We also capture the first in situ optical observations of Li intercalation in MoS2 nanosheets, shedding light on the dynamics of the intercalation process and the associated spatial inhomogeneity and cycling-induced structural defects.

296 citations

Journal ArticleDOI
TL;DR: In this article, an active metasurface that facilitates electrical tuning of the reflection phase and polarization properties is presented, where Indium-tinoxide is embedded into gapplasmon resonator-antennas as it offers electrically tunable optical properties.
Abstract: Optical metasurfaces are two-dimensional optical elements composed of dense arrays of subwavelength optical antennas and afford on-demand manipulation of the basic properties of light waves. Following the pioneering works on active metasurfaces capable of modulating wave amplitude, there is now a growing interest to dynamically control other fundamental properties of light. Here, we present metasurfaces that facilitate electrical tuning of the reflection phase and polarization properties. To realize these devices, we leverage the properties of actively controlled plasmonic antennas and fundamental insights provided by coupled mode theory. Indium–tin–oxide is embedded into gap-plasmon resonator-antennas as it offers electrically tunable optical properties. By judiciously controlling the resonant properties of the antennas from under- to overcoupling regimes, we experimentally demonstrate tuning of the reflection phase over 180°. This work opens up new design strategies for active metasurfaces for displacem...

294 citations

Journal ArticleDOI
TL;DR: It is demonstrated that particularly large changes in the reflectance from metafilms can be achieved by operating the ITO in the epsilon-near-zero (ENZ) frequency regime where its electrical permittivity changes sign from negative to positive values.
Abstract: Enhancing and spectrally controlling light absorption is of great practical and fundamental importance. In optoelectronic devices consisting of layered semiconductors and metals, absorption has traditionally been manipulated with the help of Fabry-Perot resonances. Even further control over the spectral light absorption properties of thin films has been achieved by patterning them into dense arrays of subwavelength resonant structures to form metafilms. As the next logical step, we demonstrate electrical control over light absorption in metafilms constructed from dense arrays of actively tunable plasmonic cavities. This control is achieved by embedding indium tin oxide (ITO) into these cavities. ITO affords significant tuning of its optical properties by means of electrically-induced carrier depletion and accumulation. We demonstrate that particularly large changes in the reflectance from such metafilms (up to 15% P) can be achieved by operating the ITO in the epsilon-near-zero (ENZ) frequency regime where its electrical permittivity changes sign from negative to positive values.

219 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,528 citations

Journal ArticleDOI
TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Abstract: Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.

1,184 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, is reviewed.
Abstract: Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

1,158 citations

Journal ArticleDOI
TL;DR: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature as discussed by the authors.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response, mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,106 citations

Journal ArticleDOI
TL;DR: Rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results, and electrochemical intercalation of Na ions into reduced graphene oxide is applied for fabricating transparent conductors, demonstrating the great feasibility of Na ion interCalation for optical applications.
Abstract: ConspectusThe intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due t...

844 citations