scispace - formally typeset
Search or ask a question
Author

Xiaoguang Duan

Bio: Xiaoguang Duan is an academic researcher from University of Adelaide. The author has contributed to research in topics: Catalysis & Photocatalysis. The author has an hindex of 60, co-authored 197 publications receiving 12844 citations. Previous affiliations of Xiaoguang Duan include China University of Petroleum & Curtin University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This Account showcases the recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and offers perspectives on carbocatalysis for future environmental applications.
Abstract: ConspectusCatalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.The journey starts with the dis...

872 citations

Journal ArticleDOI
TL;DR: This study not only provides robust and cheap carbonaceous materials for environmental remediation but also enables the first insight into the graphitic biochar-based nonradical catalysis.
Abstract: Environmentally friendly and low-cost catalysts are important for the rapid mineralization of organic contaminants in powerful advanced oxidation processes (AOPs). In this study, we reported N-doped graphitic biochars (N-BCs) as low-cost and efficient catalysts for peroxydisulfate (PDS) activation and the degradation of diverse organic pollutants in water treatment, including Orange G, phenol, sulfamethoxazole, and bisphenol A. The biochars at high annealing temperatures (>700 °C) presented highly graphitic nanosheets, large specific surface areas (SSAs), and rich doped nitrogen. In particular, N-BC derived at 900 °C (N-BC900) exhibited the highest degradation rate, which was 39-fold and 6.5-fold of that on N-BC400 and pristine biochar, respectively, and the N-BC900 surpassed most popular metal or nanocarbon catalysts. Different from the radical-based oxidation in N-BC400/PDS via the persistent free radicals (PFRs), singlet oxygen and nonradical pathways (surface-confined activated persulfate–carbon compl...

752 citations

Journal ArticleDOI
TL;DR: One-dimension manganese dioxides (α- and β-MnO2) were discovered as effective PDS activators among the diverse manganes oxides for selective degradation of organic contaminants in wastewater and provides a novel catalytic system for selective removal of organic contamination in wastewater.
Abstract: Minerals and transitional metal oxides of earth-abundant elements are desirable catalysts for in situ chemical oxidation in environmental remediation. However, catalytic activation of peroxydisulfate (PDS) by manganese oxides was barely investigated. In this study, one-dimension manganese dioxides (α- and β-MnO2) were discovered as effective PDS activators among the diverse manganese oxides for selective degradation of organic contaminants. Compared with other chemical states and crystallographic structures of manganese oxide, β-MnO2 nanorods exhibited the highest phenol degradation rate (0.044 min-1, 180 min) by activating PDS. A comprehensive study was conducted utilizing electron paramagnetic resonance, chemical probes, radical scavengers, and different solvents to identity the reactive oxygen species (ROS). Singlet oxygen (1O2) was unveiled to be the primary ROS, which was generated by direct oxidation or recombination of superoxide ions and radicals from a metastable manganese intermediate at neutral pH. The study dedicates to the first mechanistic study into PDS activation over manganese oxides and provides a novel catalytic system for selective removal of organic contaminants in wastewater.

733 citations

Journal ArticleDOI
Xiaoguang Duan1, Hongqi Sun1, Yuxian Wang1, Jian Kang1, Shaobin Wang1 
TL;DR: In this paper, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of peroxymonosulfate (PMS) activation and the roles of nitrogen heteroatoms were comprehensively investigated.
Abstract: Metal-free materials have been demonstrated to be promising alternatives to conventional metal-based catalysts. Catalysis on nanocarbons comparable to that of cobalt- or manganese-based catalysts in peroxymonosulfate (PMS) activation has been achieved, yet the catalyst stability has to be addressed and the mechanism also needs to be elucidated. In this study, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of PMS activation and the roles of nitrogen heteroatoms were comprehensively investigated. For the first time, a nonradical pathway accompanied by radical generation (•OH and SO4•–) in phenol oxidation with PMS was discovered upon nitrogen heteroatom doping. The NoCNTs presented excellent stability due to the emerging nonradical processes. The findings can be used for the design of efficient and robust metal-free catalysts with both superior catalytic performance and high stability fo...

700 citations

Journal ArticleDOI
TL;DR: The sample of NG-700, obtained at a calcination temperature of 700 °C, showed the highest efficiency in degradation of phenol solutions by metal-free catalytic activation of peroxymonosulfate (PMS).
Abstract: N-Doped graphene (NG) nanomaterials were synthesized by directly annealing graphene oxide (GO) with a novel nitrogen precursor of melamine. A high N-doping level, 8–11 at. %, was achieved at a moderate temperature. The sample of NG-700, obtained at a calcination temperature of 700 °C, showed the highest efficiency in degradation of phenol solutions by metal-free catalytic activation of peroxymonosulfate (PMS). The catalytic activity of the N-doped rGO (NG-700) was about 80 times higher than that of undoped rGO in phenol degradation. Moreover, the activity of NG-700 was 18.5 times higher than that of the most popular metal-based catalyst of nanocrystalline Co3O4 in PMS activation. Theoretical calculations using spin–unrestricted density functional theory (DFT) were carried out to probe the active sites for PMS activation on N-doped graphene. In addition, experimental detection of generated radicals using electron paramagnetic resonance (EPR) and competitive radical reactions was performed to reveal the PMS...

622 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: Sulfate radical-based advanced oxidation processes (AOPs) have received increasing attention in recent years due to their high capability and adaptability for the degradation of emerging contaminants as mentioned in this paper.

2,267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review on the development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on peroxymonosulfate (PMS) activation.
Abstract: Sulfate radical-based advanced oxidation processes (SR-AOPs) employing heterogeneous catalysts to generate sulfate radical (SO4 −) from peroxymonosulfate (PMS) and persulfate (PS) have been extensively employed for organic contaminant removal in water. This article aims to provide a state–of–the–art review on the recent development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on PMS activation. The hybrid heterogeneous catalyst/PMS systems integrated with other advanced oxidation technologies is also discussed. Several strategies for the identification of principal reactive radicals in SO4 −–oxidation systems are evaluated, namely (i) use of chemical probe or spin trapping agent coupled with analytical tools, and (ii) competitive kinetic approach using selective radical scavengers. The main challenges and mitigation strategies pertinent to the SR-AOPs are identified, which include (i) possible formation of oxyanions and disinfection byproducts, and (ii) dealing with sulfate produced and residual PMS. Potential future applications and research direction of SR-AOPs are proposed. These include (i) novel reactor design for heterogeneous catalytic system based on batch or continuous flow (e.g. completely mixed or plug flow) reactor configuration with catalyst recovery, and (ii) catalytic ceramic membrane incorporating SR-AOPs.

1,802 citations

Journal ArticleDOI
TL;DR: A literature review on environmental application of peroxymonosulfate (PMS) in degradation of contaminants to clarify the performance of PMS is carried out in this paper, which describes the PMS usage in remediation of environmental pollutants with focus on the different methods of activation and the effect of main operational parameters on PMS-based processes.

1,650 citations

Journal ArticleDOI
TL;DR: This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfates and the formation pathways of oxidizing species and the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry.
Abstract: Reports that promote persulfate-based advanced oxidation process (AOP) as a viable alternative to hydrogen peroxide-based processes have been rapidly accumulating in recent water treatment literature. Various strategies to activate peroxide bonds in persulfate precursors have been proposed and the capacity to degrade a wide range of organic pollutants has been demonstrated. Compared to traditional AOPs in which hydroxyl radical serves as the main oxidant, persulfate-based AOPs have been claimed to involve different in situ generated oxidants such as sulfate radical and singlet oxygen as well as nonradical oxidation pathways. However, there exist controversial observations and interpretations around some of these claims, challenging robust scientific progress of this technology toward practical use. This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfate and the formation pathways of oxidizing species. Properties of the main oxidizing species are scrutinized and the role of singlet oxygen is debated. In addition, the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry are discussed. The opportunity for niche applications is also presented, emphasizing the need for parallel efforts to remove currently prevalent knowledge roadblocks.

1,412 citations