scispace - formally typeset
Search or ask a question
Author

Xiaohua Jiang

Bio: Xiaohua Jiang is an academic researcher from Temple University. The author has contributed to research in topics: Inflammation & Proinflammatory cytokine. The author has an hindex of 28, co-authored 56 publications receiving 2565 citations. Previous affiliations of Xiaohua Jiang include Albert Einstein College of Medicine & Baylor College of Medicine.


Papers
More filters
Journal ArticleDOI
16 Mar 2012-PLOS ONE
TL;DR: In-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies.
Abstract: It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies

216 citations

Journal ArticleDOI
TL;DR: A novel flow-cytometric gating method was established to define pyrotosis (Annexin V(-)/Propidium iodide(+) and termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis.
Abstract: Rationale:Endothelial injury is an initial mechanism mediating cardiovascular disease. Objective:Here, we investigated the effect of hyperhomocysteinemia on programed cell death in endothelial cells (EC). Methods and Results:We established a novel flow-cytometric gating method to define pyrotosis (Annexin V−/Propidium iodide+). In cultured human EC, we found that: (1) homocysteine and lipopolysaccharide individually and synergistically induced inflammatory pyroptotic and noninflammatory apoptotic cell death; (2) homocysteine/lipopolysaccharide induced caspase-1 activation before caspase-8, caspase-9, and caspase-3 activations; (3) caspase-1/caspase-3 inhibitors rescued homocysteine/lipopolysaccharide-induced pyroptosis/apoptosis, but caspase-8/caspase-9 inhibitors had differential rescue effect; (4) homocysteine/lipopolysaccharide-induced nucleotide-binding oligomerization domain, and leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) protein caused NLRP3-containing inflammasome assembly, c...

174 citations

Journal ArticleDOI
15 May 2003-Blood
TL;DR: The results suggest that isolated hyperhomocysteinemia is atherogenic and alters hepatic and macrophage lipoprotein metabolism, in part, by enhancing uptake of modified LDL.

174 citations

Journal ArticleDOI
TL;DR: Findings indicate that HHcy inhibits reverse cholesterol transport by reducing circulating HDL via inhibiting apoA-I protein synthesis and enhancing HDL-C clearance.
Abstract: We previously reported that hyperhomocysteinemia (HHcy), an independent risk factor of coronary artery disease (CAD), is associated with increased atherosclerosis and decreased plasma high-density lipoprotein cholesterol (HDL-C) in cystathionine β-synthase–/apolipoprotein E–deficient (CBS−/−/apoE−/−) mice. We observed that plasma homocysteine (Hcy) concentrations are negatively correlated with HDL-C and apolipoprotein A1 (apoA-I) in patients with CAD. We found the loss of large HDL particles, increased HDL-free cholesterol, and decreased HDL protein in CBS−/−/apoE−/− mice, and attenuated cholesterol efflux from cholesterol-loaded macrophages to plasma in CBS−/−/apoE−/− mice. ApoA-I protein was reduced in the plasma and liver, but hepatic apoA-I mRNA was unchanged in CBS−/−/apoE−/− mice. Moreover, Hcy (0.5 to 2 mmol/L) reduced the levels of apoA-I protein but not mRNA and inhibited apoA-1 protein synthesis in mouse primary hepatocytes. Further, plasma lecithin:cholesterol acyltransferase (LCAT) substrate reactivity was decreased, LCAT specific activity increased, and plasma LCAT protein levels unchanged in apoE−/−/CBS−/− mice. Finally, the clearance of plasma HDL cholesteryl ester, but not HDL protein, was faster in CBS−/−/apoE−/− mice, correlated with increased scavenger receptor B1, and unchanged ATP-binding cassette transporter A1 protein expression in the liver. These findings indicate that HHcy inhibits reverse cholesterol transport by reducing circulating HDL via inhibiting apoA-I protein synthesis and enhancing HDL-C clearance.

171 citations

Journal ArticleDOI
TL;DR: The original model of three-tier expression of inflammasomes would suggest a new concept of tissue inflammation privilege, and provides an insight to the differences among tissues in initiating acute inflammation in response to stimuli.
Abstract: To determine the expression of components in Toll-like receptors (TLRs)/Nod-like receptors (NLRs)/inflammasome/caspase-1/interleukin (IL-1)-beta pathway, we examined the expression profiles of those genes by analyzing the data from expression sequence tag cDNA cloning and sequencing. We made several important findings: firstly, among 11 tissues examined, vascular tissues and heart express fewer types of TLRs and NLRs than immune and defense tissues including blood, lymph nodes, thymus and trachea; secondly, brain, lymph nodes and thymus do not express proinflammatory cytokines IL-1beta and IL-18 constitutively, suggesting that these two cytokines need to be upregulated in the tissues; and thirdly, based on the expression data of three characterized inflammasomes (NALP1, NALP3 and IPAF inflammasome), the examined tissues can be classified into three tiers: the first tier tissues including brain, placenta, blood and thymus express inflammasome(s) in constitutive status; the second tier tissues have inflammasome(s) in nearly-ready expression status (with the requirement of upregulation of one component); the third tier tissues, like heart and bone marrow, require upregulation of at least two components in order to assemble functional inflammasomes. Our original model of three-tier expression of inflammasomes would suggest a new concept of tissue inflammation privilege, and provides an insight to the differences among tissues in initiating acute inflammation in response to stimuli.

161 citations


Cited by
More filters
DOI
01 Jan 2020

1,967 citations

Journal ArticleDOI
Rui Wang1
TL;DR: The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrate, vertebrates, and finally to mammals, but over the centuries it had only been known for its toxicity and environmental hazard.
Abstract: The important life-supporting role of hydrogen sulfide (H2S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H2S had only been known for its toxicity and environmental hazard. Physiological importance of H2S has been appreciated for about a decade. It started by the discovery of endogenous H2S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H2S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H2S. The physiological functions of H2S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H2S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes...

1,560 citations

Journal ArticleDOI
TL;DR: The results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.
Abstract: The shear-responsive transcription factor Kruppel-like factor 2 (KLF2) is a critical regulator of endothelial gene expression patterns induced by atheroprotective flow. As microRNAs (miRNAs) post-transcriptionally control gene expression in many pathogenic and physiological processes, we investigated the regulation of miRNAs by KLF2 in endothelial cells. KLF2 binds to the promoter and induces a significant upregulation of the miR-143/145 cluster. Interestingly, miR-143/145 has been shown to control smooth muscle cell (SMC) phenotypes; therefore, we investigated the possibility of transport of these miRNAs between endothelial cells and SMCs. Indeed, extracellular vesicles secreted by KLF2-transduced or shear-stress-stimulated HUVECs are enriched in miR-143/145 and control target gene expression in co-cultured SMCs. Extracellular vesicles derived from KLF2-expressing endothelial cells also reduced atherosclerotic lesion formation in the aorta of ApoE(-/-) mice. Combined, our results show that atheroprotective stimuli induce communication between endothelial cells and SMCs through an miRNA- and extracellular-vesicle-mediated mechanism and that this may comprise a promising strategy to combat atherosclerosis.

1,182 citations