scispace - formally typeset
Search or ask a question
Author

Xiaojie Zhao

Bio: Xiaojie Zhao is an academic researcher from Inner Mongolia Normal University. The author has contributed to research in topics: Oxygen evolution & Overpotential. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a rapid and facile synthetic route to obtain IrxNi/C clusters via polyol reduction was reported, which showed excellent activity for the oxygen evolution reaction and hydrogen evolution reaction (HER) in acidic electrolytes.
Abstract: Design and synthesis of electrocatalysts with high activity and low cost is an important challenge for water splitting. We report a rapid and facile synthetic route to obtain IrxNi clusters via polyol reduction. The IrxNi clusters show excellent activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acidic electrolytes. The optimized Ir2Ni/C clusters exhibit an electrochemical active area of 18.27 mF cm−2, with the overpotential of OER being 292 mV and HER being 30 mV at 10 mA cm−2, respectively. In addition, the Ir2Ni/C used as the cathode and anode for the H-type hydrolysis tank only needs 1.597 V cell voltages. The excellent electrocatalytic performance is mainly attributed to the synergistic effect between the metals and the ultra-fine particle size. This study provides a novel strategy that has a broad application for water splitting.

8 citations


Cited by
More filters
Journal ArticleDOI
26 Oct 2022-Small
TL;DR: In this article , the activity-enhancing approaches of metal nanoclusters (MNCs) applied in HER electrocatalysis are mainly summarized, and the recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNC, MNC with organic, metal and carbon supports, are introduced.
Abstract: With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.

47 citations

Journal ArticleDOI
TL;DR: In this article , the catalytic properties and thermal stability of PdCu SAAs with a crown-jewel (CJ) structure are studied by density functional theory (DFT) calculations and the molecular dynamics (MD) simulation method.
Abstract: Single-atom alloys (SAAs) have been emerging as an important field of research in electrocatalysis owing to extremely high atom utilization, unique structure and high catalytic activity. In this work, the catalytic properties and thermal stability of PdCu SAAs with a crown-jewel (CJ) structure are studied by density functional theory (DFT) calculations and the molecular dynamics (MD) simulation method. The DFT results reveal that CJ-structured PdCu SAAs show excellent HER and ORR catalytic performance, and can be regarded as a promising alternative to Pt catalysts towards the ORR or HER. Additionally, we attempt to explain the high catalytic activity of PdCu SAAs by electronic structure analysis. In addition, MD simulation results confirm the thermal stability of CJ-structured PdCu. More importantly, we found that CJ-structured PdCu clusters undergo a structural transformation from cuboctahedral (Cubo) to icosahedral (Ico) structure by heating or after the adsorption of reaction intermediate, which indicates that Cubo is less stable than the Ico structure. Besides, Cubo-Ico transformation is size-dependent and only found in small clusters. Furthermore, the effects of size and morphology on melting properties are discussed. The melting point increases as cluster size increases, which agrees well with Pawlow's law.

3 citations

Journal ArticleDOI
TL;DR: In this article , a polyol reduction method was proposed to obtain IrxCo/C clusters by polyoline reduction, which can accelerate proton transfer and reduce costs while improving catalytic activity.
Abstract: Finding a suitable catalyst is an important research direction in hydrogen (H2) production from water electrolysis. We report a synthetic method to obtain IrxCo/C clusters by polyol reduction. The catalyst is small in size and can be evenly distributed. The Ir3Co/C cluster catalyst had very good activity under acidic conditions. The overpotential of the best-performing Ir3Co/C cluster for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is only 290 mV and 91 mV when 10 mA cm−2 and 100 mA cm−2. The catalyst performance may be improved because of the synergistic effect and the small size of the prepared catalyst, which accelerates proton transfer. This approach offers a strategy to reduce costs while improving catalytic activity.

2 citations

Journal ArticleDOI
TL;DR: In this article , an energy efficient Pt3Ce/C catalyst for the simultaneous precipitation of hydrogen from glycerol oxidation was presented, which showed better performance in GOR and HER compared to commercially available Pt/C electrocatalyst.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors reported the controlled synthesis of nickel-iridium alloy derivative nanochain array electrodes (NiIrx NCs) with fully exposed active sites that facilitated mass transfer for efficient OWS.
Abstract: The development of low-cost and high-durability bifunctional electrocatalysts is of considerable importance for overall water splitting (OWS). This work reports the controlled synthesis of nickel–iridium alloy derivative nanochain array electrodes (NiIrx NCs) with fully exposed active sites that facilitated mass transfer for efficient OWS. The nanochains have a self-supported three-dimensional core–shell structure, composed of a metallic NiIrx core and a thin (5–10 nm) amorphous (hydr)oxide film as the shell (e.g., IrO2/NiIrx and Ni(OH)2/NiIrx). Interestingly, NiIrx NCs have bifunctional properties. Particularly, the oxygen evolution reaction (OER) current density (electrode geometrical area) of NiIr1 NCs is four times higher than that of IrO2 at 1.6 V vs. RHE. Meanwhile, its hydrogen evolution reaction (HER) overpotential at 10 mA cm−2 (η10 = 63 mV) is comparable to that of 10 wt% Pt/C. These performances may originate from the interfacial effect between the surface (hydr)oxide shell and metallic NiIrx core, which facilitates the charge transfer, along with the synergistic effect between Ni2+ and Ir4+ in the (hydr)oxide shell. Furthermore, NiIr1 NCs exhibits excellent OER durability (100 h @ 200 mA cm−2) and OWS durability (100 h @ 500 mA cm−2) with the nanochain array structure well preserved. This work provides a promising route for developing effective bifunctional electrocatalysts for OWS applications.