scispace - formally typeset
Search or ask a question
Author

Xiaojun Wang

Bio: Xiaojun Wang is an academic researcher from Georgia Southern University. The author has contributed to research in topics: Phosphor & Photoluminescence. The author has an hindex of 57, co-authored 331 publications receiving 11183 citations. Previous affiliations of Xiaojun Wang include Northeast Normal University & Lock Haven University of Pennsylvania.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of an optical technique for noninvasive imaging of in vivo blood flow dynamics and tissue structures with high spatial resolution (2-10 microm) in biological systems based on optical Doppler tomography (ODT).
Abstract: We report the development of an optical technique for noninvasive imaging of in vivo blood flow dynamics and tissue structures with high spatial resolution (2-10 microm) in biological systems. The technique is based on optical Doppler tomography (ODT), which combines Doppler velocimetry with optical coherence tomography to measure blood flow velocity at discrete spatial locations. The exceptionally high resolution of ODT permits noninvasive in vivo imaging of both blood microcirculation and tissue structures surrounding the vessel, which has significance for biomedical research and clinical applications. Tomographic imaging of in vivo blood flow velocity in the chick chorioallantoic membrane and in rodent skin is demonstrated.

579 citations

Journal ArticleDOI
TL;DR: In this paper, a new yellow Ba0.93Eu0.07Al2O4 phosphor with a blue light-emitting diode (440-470 nm) was proposed for indoor illumination.
Abstract: Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature, 4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors' emission spectrum. Here, we report a new yellow Ba0.93Eu0.07Al2O4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature,4000 K and color rendering index >80 were readily achieved when combining the Ba0.93Eu0.07Al2O4 phosphor with a blue light-emitting diode (440-470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion.

361 citations

Journal ArticleDOI
TL;DR: To achieve excellent NIR phosphors, a strategy of enhancing the crystallinity, modifying the micromorphology, and maintaining the valence state of Cr3+ in Ca3Sc2Si3O12 garnet (CSSG) is proposed, and the internal quantum efficiency (IQE) is greatly enhanced to 92.3%.
Abstract: Broadband near-infrared (NIR)-emitting phosphors are key for next-generation smart NIR light sources based on blue LEDs. To achieve excellent NIR phosphors, we propose a strategy of enhancing the crystallinity, modifying the micromorphology, and maintaining the valence state of Cr3+ in Ca3Sc2Si3O12 garnet (CSSG). By adding fluxes and sintering in a reducing atmosphere, the internal quantum efficiency (IQE) is greatly enhanced to 92.3%. The optimized CSSG:6%Cr3+ exhibits excellent thermal stability. At 150 °C, 97.4% of the NIR emission at room temperature can be maintained. The fabricated NIR-LED device emits a high optical power of 109.9 mW at 520 mA. The performances of both the achieved phosphor and the NIR-LED are almost the best results until now. The mechanism for the optimization is investigated. An application of the NIR-LED light source is demonstrated. A near-infrared light-emitting (NIR-LED) diode that emits high-power light could pave the way for the development of next-generation monitoring and detecting devices. Although solid-state NIR-LEDs are used in such devices, their narrow emission band limits their range of applications. Broadband NIR-emitting phosphor-converted LEDs offer the best solution. However, creating NIR phosphors that are sufficiently excited by blue light is challenging. Now, a team of Chinese and American researchers, led by Yongfu Liu from the Chinese Academy of Sciences, has created a NIR-LED that emits light in the 700–900 nm with an output of 109.9 mW at 520 mA after excitation with blue light. The device has the highest recorded power rating to date and could be used in applications from bioimaging and night-vision technologies, to monitoring food and medicines.

347 citations

Journal ArticleDOI
TL;DR: The findings demonstrate the great potential of Sr5(PO4)3-x(BO3)xCl:0.04Eu2+ as a white-light phosphor for near-UV phosphor-converted WLEDs and provide a shortcut for developing a high CRI white- light phosphor from a single Eu2-doped compound.
Abstract: Single-phased, high-color-rendering index (CRI) white-light phosphors are emerging as potential phosphor-converted white-light-emitting diodes (WLEDs) and as an alternative to blends of tricolor phosphors. However, it is a challenge to create a high CRI white light from a single-doped activator. Here, we present a high CRI (Ra = 91) white-light phosphor, Sr5(PO4)3-x(BO3)xCl:Eu2+, composed of Sr5(PO4)3Cl as the beginning member and Sr5(BO3)3Cl as the end member. This work utilized the solid-solution method, and tunable Eu2+ emission was achieved. Color-tunable Eu2+ emissions in response to structural variation were observed in Sr5(PO4)3-x(BO3)xCl solid solutions. This was further confirmed using X-ray Rietveld refinement, electron paramagnetic resonance spectroscopy, and in the photoluminescence spectra. The color-tunable emissions included the white light that originated from the combination of the blue emission of Sr5(PO4)3Cl:Eu2+ and an induced Eu2+ yellow emission at approximately 550 nm in the solid solution. Importantly, the white-light phosphors showed a greater R9 = 90.2 under excitation at 365 nm. This result has rarely been reported in the literature and is greater than that of (R9 = 14.3) commercial Y3Al5O12:Ce3+-based WLEDs. These findings demonstrate the great potential of Sr5(PO4)3-x(BO3)xCl:0.04Eu2+ as a white-light phosphor for near-UV phosphor-converted WLEDs. These results also provide a shortcut for developing a high CRI white-light phosphor from a single Eu2+-doped compound. A white light-emitting diode with a very high colour rendering index is made using a phosphor based on a europium-doped oxychloride material. A team of scientists from China, Switzerland and the USA investigated the white-light phosphor Sr5(PO4)3−x(BO3)xCl:Eu2+. Its structural and electronic properties were characterized by X-ray diffraction analysis, photoluminescence spectroscopy, and fluorescence decay analysis of the phosphor. When excited by ultraviolet light (365 nanometres) from a light-emitting diode, the phosphor emitted broadband photoluminescence with peaks in the blue (446 nanometres) and yellow (550 nanometres) regions. These emission characteristics resulted in high-quality white light with a very high colour rendering index that was significantly better than those of existing commercial white light-emitting diodes based on the phosphor YAG:Ce3+, indicating the potential of this new phosphor.

280 citations

Journal ArticleDOI
TL;DR: The group index of refraction for both dentin and enamel was measured at 1.50 +/- 0.02 and 1.62−0.02, respectively as mentioned in this paper.
Abstract: Optical coherence tomographic images of human dentin and enamel are obtained by use of polarization-sensitive optical coherence tomography. A birefringence effect in enamel (lambda = 856 nm) and light propagation along dentinal tubules are observed. The group index of refraction for both dentin and enamel was measured at 1.50 +/- 0.02 and 1.62 +/- 0.02, respectively.

262 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI

2,877 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations