scispace - formally typeset
Search or ask a question
Author

Xiaokang Lai

Bio: Xiaokang Lai is an academic researcher from Electric Power Research Institute. The author has contributed to research in topics: Energy storage & Stand-alone power system. The author has an hindex of 4, co-authored 7 publications receiving 671 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a smoothing control method for reducing wind/photovoltaic (PV)/BESS hybrid output power fluctuations and regulating battery state of charge (SOC) under the typical conditions is proposed.
Abstract: The battery energy storage station (BESS) is the current and typical means of smoothing wind- or solar-power generation fluctuations. Such BESS-based hybrid power systems require a suitable control strategy that can effectively regulate power output levels and battery state of charge (SOC). This paper presents the results of a wind/photovoltaic (PV)/BESS hybrid power system simulation analysis undertaken to improve the smoothing performance of wind/PV/BESS hybrid power generation and the effectiveness of battery SOC control. A smoothing control method for reducing wind/PV hybrid output power fluctuations and regulating battery SOC under the typical conditions is proposed. A novel real-time BESS-based power allocation method also is proposed. The effectiveness of these methods was verified using MATLAB/SIMULINK software.

728 citations

Proceedings ArticleDOI
04 Jul 2010
TL;DR: In this article, a fuzzy logic based control method of battery state of charge (SOC) is proposed to regulate the battery SOC at expected conditions, and consequently the energy capacity of BESS can be small.
Abstract: This paper presents the simulation analysis of wind power and battery energy storage system (BESS) hybrid microgrid power system to improve the performance of the hybrid generation system. A fuzzy logic based control method of battery state of charge (SOC) is proposed to regulate the battery SOC at expected conditions, and consequently the energy capacity of BESS can be small. The effectiveness of the proposed method is verified by using MATLAB/SIMULINK software for considered hybrid generation system.

47 citations

Proceedings ArticleDOI
04 Jul 2010
TL;DR: A means of fuzzy logic assisted pitch angle control is proposed to regulate the wind power output intelligently and to manage battery state of charge (SOC) at expected conditions, and consequently the energy capacity of BESS can be small.
Abstract: This paper presents the simulation analysis of wind power and battery energy storage system (BESS) hybrid power system to improve the performance of the hybrid generation system. The BESS is used to smooth the output power of wind power generation system (WPGS). A means of fuzzy logic assisted pitch angle control is proposed to regulate the wind power output intelligently and to manage battery state of charge (SOC) at expected conditions, and consequently the energy capacity of BESS can be small. The effectiveness of the proposed method is verified by using MATLAB/SIMULINK software for considered hybrid generation system.

11 citations

Proceedings ArticleDOI
16 Apr 2010
TL;DR: In this article, a fuzzy logic based control strategy is proposed to regulate the frequency fluctuation and the battery stage of charge at expected conditions, which can improve the power quality of the hybrid generation system.
Abstract: This paper presents the simulation analysis of wind power, battery energy storage system (BESS), and intelligent demand side management system (IDSMS) hybrid micro-grid power system to improve the power quality of the hybrid generation system. A fuzzy logic based control strategy is proposed to regulate the frequency fluctuation and the battery stage of charge (SOC) at expected conditions. As a result, the energy capacity of BESS can be small and the power quality of the micro-grid power system can be ensured. The effectiveness of the proposed method is verified by using MATLAB/SIMULINK software for considered hybrid generation system.

6 citations

Patent
25 Sep 2013
TL;DR: In this paper, an energy management method of a multi-type battery energy storage power station considering charge and discharge rates is presented. But the authors do not consider the service-life of the batteries.
Abstract: The present invention provides an energy management method of a multi-type battery energy storage power station considering charge and discharge rates, that includes: reading related data of the battery energy storage power station; calculating charge or discharge rate characteristic values of battery energy storage machine sets; calculating initial power command values of the battery energy storage machine sets; judging whether the initial power command values of the battery energy storage machine sets exceed the maximum allowable charge or discharge power of the machine sets in real time, if more than, online correcting and re-calculating the initial power command values of the battery energy storage machine sets; otherwise, setting the initial power command values of the energy storage machine sets as the power command values thereof; and summarizing the power command values of the battery energy storage machine sets, and outputting the same. With the reasonable control of the charge and discharge rates of the energy storage machines sets as target, the energy management method of the present invention is used for carrying out power coordinated control and energy management in the energy storage power station, and considering the service lives of energy storage batteries in the control strategy to achieve the functions of avoiding abuse of the energy storage batteries as much as possible, delaying battery aging and the like.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a smoothing control method for reducing wind/photovoltaic (PV)/BESS hybrid output power fluctuations and regulating battery state of charge (SOC) under the typical conditions is proposed.
Abstract: The battery energy storage station (BESS) is the current and typical means of smoothing wind- or solar-power generation fluctuations. Such BESS-based hybrid power systems require a suitable control strategy that can effectively regulate power output levels and battery state of charge (SOC). This paper presents the results of a wind/photovoltaic (PV)/BESS hybrid power system simulation analysis undertaken to improve the smoothing performance of wind/PV/BESS hybrid power generation and the effectiveness of battery SOC control. A smoothing control method for reducing wind/PV hybrid output power fluctuations and regulating battery SOC under the typical conditions is proposed. A novel real-time BESS-based power allocation method also is proposed. The effectiveness of these methods was verified using MATLAB/SIMULINK software.

728 citations

Journal ArticleDOI
11 Dec 2017-Energies
TL;DR: In this article, the authors present a review of battery energy storage systems for serving grid support in various application tasks based on real-world projects and their characteristics with respect to performance and aging.
Abstract: Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

458 citations

Journal ArticleDOI
TL;DR: In this article, an energy management and control system for laboratory scale microgrid based on hybrid energy resources such as wind, solar, and battery is proposed, which operates in autonomous mode and has an open architecture platform for testing multiple different control configurations.
Abstract: This paper proposes an energy management and control system for laboratory scale microgrid based on hybrid energy resources such as wind, solar, and battery. Power converters and control algorithms have been used along with dedicated energy resources for the efficient operation of the microgrid. The control algorithms are developed to provide power compatibility and energy management between different resources in the microgrid. It provides stable operation of the control in all microgrid subsystems under various power generation and load conditions. The proposed microgrid, based on hybrid energy resources, operates in autonomous mode and has an open architecture platform for testing multiple different control configurations. A real-time control system has been used to operate and validate the hybrid resources in the microgrid experimentally. The proposed laboratory scale microgrid can be used as a benchmark for future research in smart grid applications.

333 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive literature review on problems associated when the intermittent PV is connected to grid and the methods of smoothing the output power fluctuation from PV is presented, also briefly discusses control strategy built for battery energy storage pertaining to this issue.
Abstract: Renewable Energy Sources (RESs) particularly photovoltaic (PV) and wind are becoming important sources for power generation. Frequently varying output of PV and wind caused by clouds movement, weather condition and wind speed make them an intermittent and unreliable sources when connected to grid. Connecting intermittent sources to grid introduces challenges in various technical aspects such as power quality, protection, generation dispatch control and reliability. In this context, leveling intermittent source׳s output is necessary inorder to maintain grid׳s stability. This paper is aimed at bringing out the latest comprehensive literature review on problems associated when the intermittent PV is connected to grid and the methods of smoothing the output power fluctuation from PV. This paper also briefly discusses control strategy built for battery energy storage pertaining to this issue.

304 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a strategy where the ramp-rate of PV panel output is used to control the PV inverter ramp rate to a desired level by deploying energy storage.
Abstract: The variability of solar irradiance with a high ramp-rate, caused by cloud passing, can create fluctuation in the PV output. In a weak distribution grid with a high PV penetration, this can create significant voltage fluctuations. Energy storage devices are used to smooth out the fluctuation using traditional moving average control. However, moving average does not control the ramp-rate directly; rather the ramp-rate depends on previous values of PV output. This paper proposes a strategy where the ramp-rate of PV panel output is used to control the PV inverter ramp-rate to a desired level by deploying energy storage (which can be available for other purposes, such as storing surplus power, countering voltage rise, etc.). During the ramping event, the desired ramp-rate is governed by controlling the energy storage based on an inverse relationship with the PV panel output ramp-rate to improve the fluctuation mitigation performance. In contrast to the moving average method, the proposed strategy is able to control the desired ramp-rate independent of the past history of the PV panel output. A dynamic model of the PV-storage integrated system is developed to verify the proposed strategy in the presence of physical device time lags. The proposed strategy is verified using simulation results based on an Australian distribution system. A laboratory experiment is also conducted to validate the concept of the proposed control strategy.

278 citations